
465 

 

 

 

 

     TECHNICAL UNIVERSITY OF CLUJ-NAPOCA 
 

      ACTA TECHNICA NAPOCENSIS 
 

 Series: Applied Mathematics, Mechanics, and Engineering

                      Vol. 60, Issue IV, November, 2017 

 

 

 

 

 

  

 

 

 

THE DYNAMIC ANALYSE OF A CONSTRUCTION 

WITH THE BASE INSULATION CONSISTING  

IN ANTI-SEISMIC DEVICES MODELLED AS A  

HOOKE-VOIGT-KELVIN  

LINEAR RHEOLOGICAL SYSTEM   
 

Polidor BRATU, Adriana STUPARU, Adrian LEOPA, Sorin POPA 

 

 
Abstract: The paper presents the main results of theoretical and experimental researches regarding 

dynamic behaviour of constructions (building, bridge, or viaduct) with the base insulation, composed of 

series / parallel connection of elastomeric and dissipative anti-seismic devices. The purpose of the paper 

is to highlight the dynamic behaviour and the isolation capacity when the base insulation system can be 

constructed to respect the laws of the Hooke-Voigt-Kelvin linear rheological model. There were used the 

data of some rigid behaviour buildings, as well as the fundamental excitation of the 4th
 March 1977 

earthquake. The carried out studies highlighted the possibility to assess the dynamic response and the 

isolation capacity at the action of fundamental spectral component of the 4th
 March 1977 earthquake. 

Key words: isolation capacity, elastomeric and dissipative anti-seismic devices, laws of the Hooke-Voigt-

Kelvin linear rheological model 

 

1. INTRODUCTION   
 

  The elastomeric and fluid dissipative anti-

seismic devices currently manufactured in 

Europe production highlight a very good level of 

performances, with a wide range of parameters, 

and having all linear or nonlinear behavior. 

For certain categories of constructions (rigid 

buildings, bridges, viaducts), technical solutions 

are sought in order to increase the insulation and 

dissipation capacity of the seismic energy 

depending on the high risk and significant 

vulnerability countries location. For this reason, 

some design solutions adopt the method of 

combining anti-seismic devices with 

predominantly elastic characteristic, with fluid 

dissipative anti-seismic devices, in a favorable 

connection following the Hooke-Voigt-Kelvin 

model. 

In this case, the stiffness and damping 

characteristics of the system are determined on 

the basis of the in post-resonance dynamic 

isolation criterion, taking into account the corner 

period Tc and the period T of the zonal seismic 

motion. 

The computation excitation of the system 

consists in selecting the fundamental component 

from the spectral composition of the earthquake 

specific for a seismic area belonging to a defined 

geographic area. In this case, in the horizontal 

direction of action of the seismic movement, the 

fundamental spectral component of the 

acceleration was adopted, as a = ω2X0 sinωt, 

where: X0 is the horizontal displacement 

amplitude of the ground, and ω is the angular 

frequency of the seismic movement, with the 

period T = ω / 2π. 

For the case analysis presented in the paper, 

the following values were adopted: T = 2 s,      F 

= 0,5 Hz, ω = π rad/sec, a = 3 m/s2,             X0 

=0,3 m. The used hypotheses are: rigid behavior 

of the construction, in linear domain behavior of 

the Hooke-Voigt-Kelvin viscous-elastic system, 

and translation motion of the rigid in relation 
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with the absolute coordinate system related to 

considered fixed mark. 

 

2. THE DYNAMIC SYSTEM RESPONSE IN 

RELATIVE INSTANTANEOUS 

DISPLACEMENTS 
¶ (12pt) 

The Hooke-Voigt-Kelvin dynamic linear 

model (Figure 1), with composed viscous-elastic 

link E − (E/V), represents the isolation at the 

base realized by a convenient arrangement of 

anti-seismic devices. Thus, elastomeric devices 

with predominantly elastic behavior are used, 

with the elastic constants k, Nk, where N is a real 

positive multiplier, as well as fluid dissipative 

devices with viscous damping constant c, all 

with linear behavior. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Dynamic model with viscous-elastic link              

E − (E/V) 

 

The coordinate system is adopted as follows: 

the mark O1, considered fixed, linked to the 

motionless axis O1X, defines the coordinates of 

the absolute motion; the mark O (xo), linked to 

the ground defines the coordinates of the 

transport movement generated by earthquake, in 

the horizontal direction OX. 

The relative movement of points A and B is 

defined by the horizontal instantaneous 

displacements and in relation to the mobile mark 

O(xo), namely x(t) and y(t).  The mobile mark O 

(xo) identifies the ground motion during the 

earthquake for the fundamental spectral 

component according to the law:         xo = X0 sin 

ωt  

The motion differential equations of the mass 

m, for the hypothesis xo >y> x, can be written as 

follows: 

� � ∙ �� = 	�	(� − �)�	(��� − ��) + 		(	�� − �	) = �		(� − �	)  

(1

) 

and the complex formulation with the imaginary 

unit  j = √−1 : 

� � ∙ ��� 	+ �	�� 	− �	�� 	= 0�	(���� − 	��� ) + 		(	��� − ��	) − �		(�� 		− ��		) = 0      

(2) 

where:   x�� =	X�e���; �� =  !"#$%, '()ℎ	 ! = "#+, 	; 	 ; �� = -."#$%, '()ℎ-. = -"#+/ 	 
By replacing, in the relations (2) the complex 

measures and their derivatives in relation to 

time, it is we obtained the algebraic system in  ! 
si -. , as: 

� (−� ∙ 01 + �	) ! − �	�� 	− �	-. 	= 0�		 ! − (2�0 + 	 + �	)-. = −(2�0 + 	)3� (3) 

resulting the base system determinant  45, as: 

45 = −6�	1 − 	�01(1 + �)7− 2�0(�	 −�01)      (4) 

or: 

45 = −8 − 29      (5) 

where: 

γ = Nk1 − kmω1(1 + N)     (6) 
  δ = cω(Nk − mω1)      (7) 

Noting:	A = �	 −�01  and  B = �0 , the 

following expressions are obtained: 

8 = 	(A − �01�)       (8) 
  δ = αβ       (9) 

The complex amplitude  !, in system (3), is 

obtained as: 

 ! = −3��	 	 + 2�08 + 29   

or: 

 ! = −3��	 181 + 91 6(	8 + �09)
− 2(	9 − �08)7    (10) 

From the equation (10), the instantaneous 

displacement amplitude x(t), is obtained as: 

B 

Nk A m 

y(B) 

 

O1 

X 

k 

x0(X0) 

c 

x(A) 

O 
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| | = −3��	F	1 + �101
81 + 91     (11) 

or: 

| | =  (�, 0)
= 3��	F 	1 + �101

6�	1 − 	�01(1 + �)71 + �101(�	 −�01)1 (12) 

and the dephasing θ1 expressed as: 

)GHI = 	9 − �08	8 + ��9  

The complex amplitude -.  is obtained as: 

-. = 3�A 	 + 2�08 + 29   

or: 

-. = 3� A81 + 91 6(	8 + �09)
− 2(�08 − 	9)7   (13) 

Using the equation (13), the amplitude B of 

the instantaneous displacement y(t) and 

diphasing θ2 s expressed as: 

-	 = |-| = 3�FA1(	1 + �101)81 + 91  (14)  

or: 

B	 = |B| = B(c,ω)
= X�F (Nk −mω1)1 ∙ (k1 + c1ω1)6Nk1 − kmω1(1 + N)71 + c1ω1(Nk − mω1)1 

 

(15) 

(!) Note:  by reporting expression (15) to 

expression (12) it is obtained the amplitudes 

ratio B/ A as:  
KL = MNO,M   , where:   Ω1 = $$Q = RS 0   ( 16) 

Analysing the expression (16) the following 

cases of dynamic behaviour are considered 

a. if N→0, then B/A →∞, meaning amplitude 

A≡0. In this case, the spring Nk has a very low 

stiffness, almost negligible, with “soft spring” 

effect, meaning that the motion from point B to 

point A cannot be transmitted. 

b. if N→∞, then B/A →1, meaning that the 

motions of points A and B have the same 

amplitude. In this case, the spring Nk has such a 

high stiffness, that its deformation is negligible, 

meaning that the elastic link Nk behaves as a 

rigid.  

c. if N =Ω
2  or  Ω = √N , then B/A =0, 

respectively the amplitude B becomes so small 

that it can be neglected, ie B≡0. In this case, the 

mass moves in relation to the "fixed point" B as 

if it were linked only at this point. 

Figure 2 presents the amplitude A (c,ω) 

variation depending on the continuous variation 

of ω and the discrete variation of c 

 

Fig. 2. The variation curves of the amplitude A 

depending on the discrete variation of c and 

the continuous variation of ω 

 

Figure 3 presents the amplitude B variation 

depending on c and ω. 

 
Fig. 3. The variation curves of the amplitude B 

depending on the discrete variation of c and 

the continuous variation of ω 

 

 

 

 

3. THE DOFORMATIONS OF THE 

VISCOUS-ELASTIC SYSTEM E- (E/V) 
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There are analysed the instantaneous 

deformation process of the two systems series 

linked, namely the viscous-elastic system 

Voight-Kelvin, respectively the elastic system 

Hooke, with Nk stiffness.  

3.1. The deformation of the viscous-elastic 

system Voigt-Kelvin (E/V) 

Considering that the instantaneous 

deformations are T�I =	U.I"#$% with U.I =UI"#V/, where V1 is the amplitude of the 

viscous-elastic deformation (E/V). Taking into 

account the instantaneous displacements xo(t) 

and y(t) , or ��o, and	 �� : 
T�I =	��� − ��     (17) 

or: 	U.I"#$% = 3�"#$% − -."#$%  

obtaining: U.I = 3� − -.      (18) 

or: 

	U.I = 3�W 	�01(−8 + 29)     (19) 

where: W = 81 − 91 = 6�	1 − 	�01(1 ��
71 � �101
�	 ��01
1 
   (20) 

From the expressions (6), (7), (19) and (20) 

the amplitude of the deformation V1( c,ω) and 

the dephasing ϕ1 can be obtained as: 

VI
c, ω

� X� kmω1

Y6Nk1 � kmω1
1 � N
71 � c1ω1
Nk � mω1
1
(21

) 

  

)GZI � �98 
 

or: 

	)GZI � �0
Nk � mω1
Nk1 � kmω1
1 � N
    (22) 

Figure 4 presents the amplitude variation of 

the system E/V system, depending on the 

discrete variation of C and continuous variation 

of pulsation ω 

 

 
 

Fig. 4 The variation curves of the deformation V1 

depending on the discrete variation of  dumping c and the 

continuous variation of excitation pulsation ω 

 

3.2. The deformation of the elastic system 

Hooke (E) 

For the spring with the stiffness Nk, where 

N>0, the instantaneous elastic deformation is 

expressed as:  

T�1 �	�� � ��,      (23) 

or: U.1 � -. �  !       (24) 

By expressing  ! and -.  in expression (24), 

results: 

U.1 � 3�W 
A � �	
6
	8 � B9
 � 2
B8 � 	9
7     (25) 

                   )GZ1 � [\NS]S\^[]																															(26) 

from where the amplitude V2 of the elastic 

deformation and the dephasing  ϕ2, can be 

obtained as: 

U1
�, 0
 � 
A � �	
3�F	1 � B181 � 91    (27) 

Taking into account the expressions (6), (7) 

and (8),  the equations (26) and (27) can be 

written as: 

U1
�, 0

� ��03�F 	1 � �101

6�	1 � 	�01
1 � �
71 � �101
�	 ��01
1 (28) 

  

)GZ1 � � ckω1mNk16Nk � mω1
1 � N
7 � c1ω1
Nk �mω1
 (29) 
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Figure 5 presents the variation of the 

maximum elastic variation V2 depending on the 

discrete variation of c and continuous variation 

of ω. 

 
Fig.5 The variation curves of the amplitude V2 of the 

elastic deformation depending on c and the continuous 

variation of ω 

4. DYNAMIC INSULATION CAPACITY 

The assessment of the dynamic insulation 

capacity is performed, as follows: 

a. by determining the maximum transmitted 

force Qo from the construction support 

invariably linked to the ground under seismic 

motion towards the construction having the mass 

m, by means of the base insulation system; 

b. by establishing the calculus relation of the 

transmissibility T of the motion from the mobile 

mark O to the point A belonging to the mass m. 

In this case, the degree of seismic isolation is 

calculated with the relation I = 1- T. 

4.1. The maximum transmitted force 

The maximum transmitted force Qo is 

determined as the link force in the region of the 

spring with multiple stiffness Nk for the Hooke 

modelled elastic line (E).  Thus, the expression 

is: 

_� = �	U1     (30) 

taking into account the expression (28), it is 

obtained: 

_�(�, 0

� 	�013��F 	1 � �101

6�	1 � 	�01
1 � �
71 � �101
�	 ��01
1 (31) 

with the graphic representation in figure 6. 

 
 

Fig. 6 The variation curves of the maxiumum transmitted 

force Qo depending on c and ω 

4.2 Motion transmissibility  

The motion transmissibility T from the 

excitation point Qo to the receiving point A(x) is 

assessed using the expression: 

` �  ��    (32) 

where by expressing A as in expression (12), it 

is obtained: 

`
�,0

� 	�F 	1 � �101

6�	1 � 	�01
1 � �
71 � �101
�	 ��01
1 (33) 

with the graphic representation in figure 7. 

 
Fig. 7 The variation curves of the transmissibility T 

depending on c and ω 
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5. THE DISSIPATED ENERGY 

The amount of dissipated energy depends 

essentially on the equivalent viscous damping 

constant of the entire viscous fluidic dissipative 

system and on the amplitude of the deformation 

of the viscous-elastic system V1, Voigt-Kelvin 

modelled. Thus, the dissipated energy Wd can be 

expressed as: 

ab = c�0UI1     (34) 

where, by expressing V1 as in expression (21), it 

is obtained: 

ab(�, 0

� c3�1 	1�1�0d

6�	1 � 	�01
1 � �
71 � �101
�	 � �01
1 (35) 

with the graphic representation in figure 8. 

 
 

Fig. 8 The variation curves of the dissipated energy Wd 

depending on the viscous dumping c and the excitation 

pulsation ω 

The initial data used for the case of study and 

for the plotting of the variation curves of the 

response parameters are as follows: m=3Mkg , 

k=4,8M N/m; N =10; c = ( 1,5 ; 2 ; 3 ; 4 ; 5 ) 

MN·s/m; a =3m/s2 la ω=π rad/s and     Xo =0,3m. 

6. CONCLUSIONS 

The technical solutions for increasing the 

base dynamic isolation capability are realized in 

a wide variety of combinations, with serial / 

parallel connection of the anti-seismic devices 

with linear / non-linear behaviour.  

In order to establish the strategy for the 

realization of a system composed of elastomeric 

anti-seismic devices in series / parallel 

connection, with fluid dissipative anti-seismic 

devices it is necessary a systemic analysis for the 

components selection, so that the final objective 

of the dynamic isolation efficiency to be 

achieved. 

For this, the most reliable and rational way is 

to establish parametric analytical relations in 

order to provide the possibility to assess the 

dynamic response to kinematic excitations of the 

seismic movement on the fundamental spectral 

component. 

In this context, analytical and experimental 

researches were carried out in order to establish 

the efficiency of the rheological composed 

model E-(E/V) type Hooke-Voigt-Kelvin. The 

assessment scenario for the analytical approach 

was based on the initial numerical data presented 

in the paper, and the results of the study can be 

synthesized as follows: 

a. dynamic response, to the given excitation 

is expressed by the instantaneous displacement 

x(t) = Asin( ωt+θ2)  where the amplitude A = A 

(c,ω) is represented by a family of curves 

parameterized by the viscous damping c to the 

continuous variation of the excitation pulsation 

ω. 

b. instantaneous deformations v1(t) and v2(t) 

have the amplitudes V1 and V2 corresponding 

to the viscous-elastic system (E/V) type Voigt-

Kelvin and respectively the elastic system (E) 

type Hooke. The analytical expressions of the 

amplitudes V1(c,ω) si V2(c,ω) are useful in the 

assessment and calculation of the dissipated 

energy Wd on the viscous linear damper c, and 

accordingly for the calculation of the maximum 

transmitted force Qo on the elastic system with 

the multiplied stiffness Nk. 

c. dynamic isolation capability is assessed 

both by the maximum transmitted force Qo, as 

well as by the motion transmissibility T = T 

(c,ω) depending on the discrete variations of c 

and the continuous variation of ω. 

d. dissipated energy Wd in the damper c with 

fluid dissipation is expressed analytical form and 

graphically represented by a family of 

parameterized curves. 

Essentially, the assessment of dynamic 

behaviour using the analytical approach for a 

dynamic base isolation system is a necessary and 
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significant calculation method in the pre-stage of 

the parametric dynamic analysis. As a result, the 

parametric relations established for the dynamic 

response parameters, for the deformations of the 

composed system Hooke-Voigt-Kelvin, as well 

as for the isolation and dissipation capacity can 

be used in the calculations of dynamic analysis 

and for the   dimensioning of the base insulation 

systems for constructions exposed to seismic 

actions. 
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Analiza dinamica a unei constructii cu izolare la baza alcatuita din dispozitive antiseismice modelate ca sistem 

reologic liniar  Hooke-Voigt-Kelvin  
 

Rezumat: In lucrare se prezinta principalele rezultate ale unor cercetari teoretice si experimentale privind comportarea 

dinamica a unei constructii (cladire, pod, viaduct ) cu izolare la baza, aceasta fiind alcatuita din conexiunea in serie/ 

paralel a dispozitivelor antiseismice elastomerice si disipative. Scopul lucrarii este acela al evidentierii comportarii 

dinamice si a capacitatii de izolare atunci cand sistemul de izolare la baza poate fi alcatuit astfel incat sa respecte legitatile 

modelului reologic liniar Hooke-Voigt-Kelvin. Pentru aceasta au fost utilizate datele tehnice ale unor cladiri cu 

comportament de rigid cat si excitatia fundamentala a cutremurului de pamant din Romania de la data de 4 martie 1977. 

Asamblarea dispozitivelor elastomerice si disipative din productia existenta in Europa a permis stabilirea unei solutii 

tehnice de sistem de izolare dinamica modelat Hooke-Voigt-Kelvin. Ca urmare studiile efectuate au evidentiat 

posibilitatea evaluarii analitice a raspunsului dinamic si a capacitatii de izolare la actiunea componentei fundamentale 

spectrale a cutremurului din Romania ce s-a produs la 4 martie 1977 
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