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Abstract: An inverse approach for evaluation the quality of the adhesive layer is formulated in this paper, 

based on the sensibility of Stoneley wave to defects. The inverse problem minimizes the least square 

distance between computed and measured wave signals arriving to receiver. The minimization algorithm 

has two steps: a genetic algorithm and a global minimisation procedure (quasi-Newton) in order to obtain 

a single solution. Based on the interplay of Stoneley waves with properties of the adhesive bond we show 

that it is possible to identify in a unique manner the location and size of the defect. 
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1. INTRODUCTION  
  

Adhesive bonding is the process of joining 

together two materials by an adhesive layer.  A 

bond quality implies that the layer has fewer 

amounts of defects, a higher mechanical 

strength, and a longer durability. Bond strength 

refers to the value of the load, which is applied 

in tension, compression, flexure, peel, impact, 

or shear, required to break an adhesive layer 

with failure in or near the plane of the bond. 

Ultrasonic techniques utilize a piezoelectric 

transducer to generate energy into the structure. 

The waves interact with the material and are 

propagated back to the transmission transducer 

or to the receiving transducer [1,2].  

The interaction of Stoneley waves in a 

multilayered medium with elastic bond 

conditions at the interfaces was studied in [3,4]. 

 The existence of the Rayleigh, Stoneley, 

Love and slip waves, respectively in a plate or 

layered plate was investigated in [5].  

In this article, the plane-strain elastic wave 

propagation for two dissimilar half-spaces 

joined together at a plane interface by an elastic 

bond, is investigated. The bond thickness is 

assumed to be small compared to the 

wavelength. The existence of interface waves is 

shown to be governed by a parameter involving 

bond stiffness and wavelength. The infinitely 

stiff bond produces Stoneley waves and the 

infinitely soft bond, two Rayleigh surface 

waves, one in each medium.  As the bond 

became stiff, the Rayleigh waves change into 

two interface waves, each involving motion of 

both media. One of these waves, the one with 

the higher velocity, disappears for a sufficiently 

stiff bond. With further increase in bond 

stiffness, the remaining interface wave either 

transforms into a Stoneley wave or disappears, 

depending on whether or not Stoneley waves 

exist or not.  

Furthermore, when the Rayleigh wave 

velocity in the faster medium is greater than the 

S-wave velocity in the slower medium, the 

Rayleigh waves in the faster medium exist only 

for zero bond stiffness. As soon as the stiffness 

becomes finite, the wave disappears, and only a 

wave similar to the Rayleigh wave in the 

slower medium may occur. A new method for 

analyzing interfacial conditions in adhesive 

bonds is suggested in [3,6].  

In this paper, we refer to the interfaces with 

defects rather than intact ones.  The bonding 

can contain fine micro fractures: cracks, joints, 

voids of typical size 1 m≈ µ . The adhesive 

layers (interfaces), or the bond systems, are 

located between the adherents and consist of a 
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fabric of defects that participate in the elastic 

response of the material.  

The method is based on the sensibility of 

Stoneley wave to change its propagation 

strategy along the interfaces with defects 

between dissimilar solid media, Stoneley wave 

attenuation is found to increase as a function of 

increasing interface damage [7-9].    

  

2. BASIC THEORY 
  

Consider the interface of two layers filled 

with different materials. The Lame constants 

and the mass density of these materials are 

,
i i

λ µ , and 
i

ρ , 1,2i = . Both media are 

supposed homogeneous and isotropic. The 

interface between layers contains defects. The 

criterion for Stoneley waves is that the 

displacements decays exponentially with 

distance from the interface 2 0x = , in both 

media [10]. For the first layer 2 10 x l< ≤ , we 

consider the displacement field of the form 

2 1exp( )exp[i ( )]
i i

u A x k x vt= −α −  , 1,2i = , (1) 

where the real part of α   is positive.  

Substitution of (1) into the motion equations   

1 , 1 1 , 1( )
i jj j ji i

u u uµ + λ + µ = ρ && ,                (2) 

yields to a homogeneous system of equations in 

the unknowns 
i

A , 1,2i = . Vanishing condition 

for the determinant of this equations leads to  
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ρ
 are the 

longitudinal and transversal waves phase 

velocities in the medium 1, respectively, k  the 

wavenumber and v  the phase velocity of 

Stoneley waves. The roots of (3) are 1kα  and 

2kα , where 

  
2

1 2

1

1
L

v

v
α = − ,

2

2 2

1

1
T

v

v
α = −  ,             (4) 

and we calculate two solutions for 2 1/A A   

  2
1
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A
= α ,   2

1 2

iA
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α
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For 1 1T L
v v v< <  the constants 

i
α , 1,2i =  

are real and positive. So, the general solutions 

of the displacement equations of motion for the 

first layer are 

1 1 1 2 2 2 2

1

[ exp( ) exp( )]

exp[i ( )],

u A x A k x

k x vt

= −α + − α

× −
 

[

]
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1
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+ − α −
α

  (6) 

For the second layer 2 2 0l x− ≤ <  the similar 

displacements components 1u  and 2u  are 

obtained 
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where 2 2 2
2

2

2
L

v
λ + µ

=
ρ

, 2 2
2

2

T
v

µ
=

ρ
 are the 

longitudinal and transversal waves phase 

velocities in the medium 2. For 2 2T L
v v v< <  

the constants 
i

α , 3,4i =  are real and positive. 

So, we consider that the components of 

displacements 1 2,u u  and the components of the 

stresses 22 21,t t  are not continuous at the 

interface 2 0x = , where 

22 1,1 2,2( 2 )t u u= λ + λ + µ  ,               (9) 

21 2,1 1,2( )t u u= µ + .                 (10) 

We suppose that there exist jumps in 

displacements and stresses at the interface 

2 0x =  due to the presence of defects 
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0

1 1[ ]u u= , 0

2 2[ ]u u= ,  0

22 22[ ]t t= , 0

21 21[ ]t t= .  (11) 

The jump is characterized by two no 

dimensionless quantities 1 2,φ φ  defined as 

fractions of the displacement field in 2 0x > , 

2 0x →  

1 1 1 1 2 2 2 2

1

[ exp( ) exp( )]

exp[i ( )],

ou A k x A k x

k x vt

= φ − α + − α

−
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 (12) 

0 0 0

22 1 1,1 1 1 2,2( 2 )t u u= λ + λ + µ , 0 0 0

21 1 2,1 1,2( )t u u= µ +  

Substitution of (6), (7), (9), (10) in (11) 

yields to a system of four homogeneous 

equations in unknowns 
i

A , 1,2,3,4i = . 

The condition of vanishing of the 

determinant gives the dispersion equation. 

Stoneley waves exist when this equation has 

real roots. This equation determines the nature 

of the phase velocity of the Stoneley waves 

Stoneleyc   in terms of the quantities 1 2,φ φ  and the 

wavenumber k . For 1 0φ =  and 2 0φ =  the 

dispersion equation does not depend on k  and  

Stoneley waves are not dispersive, but in the 

case 1 0φ ≠  and/or 2 0φ ≠ ,  the waves become 

dispersive.  

A practical criterion for knowing the real 

roots of the dispersion equation is the following 

]10-12] 

1 2 Stoneley 1 2max( , ) min( , )
R R T T

c c c c c< < ,   

where ,
T R

c c  are the velocities of transverse and 

Rayleigh waves, respectively. 

 

3. RESULTS AND DISCUSSION 
  

Snapshots of the propagation of Stoneley 

waves in the vicinity of the interface 2 0x =  are 

shown in Figs. 1-3 for different moments of 

time. Dimension of layers are 1 2 10cml l= = , 

and the height is 25cm. Time progression is to 

the right. One rectangular small effect of size 

1× 0.5 mm into the bond 2 0x =  is represented 

by a red line. The source located on the face A 

send a signal to the interface, and the receiver 

on the face B measures the amplitudes of the 

arriving signals. 

The problem to be addressed here is the 

inverse of the forward problem. We seek to 

determine information about the location and 

size of the defect by using measured signals on 

the face B.  

The aim is to use the difference between 

measured amplitudes of waves and predicted by 

theory amplitudes to provide a procedure, 

which iteratively corrects the results to the least 

discord between predictions and experimental 

observations. 

The inverse problem is formulated as a 

square sum of differences between the 

computed c

i
u , 1,2i = , and measured m

i
u , 

1,2i = , amplitudes of the Stoneley waves, 

respectively 

2
2

1 1

( )
M

c m

i i

i m

G u u
= =

= −∑∑ ,                   (13) 

where M is the number of points.  

 

 
Fig. 1.  Snapshots of the propagation of 

Stoneley waves after 50 sµ  and 80 sµ , 

respectively. 

 

The accuracy of the identification of defect 

is made by evaluating the relative error 
A

ε  for 

boundary defect area 2Γ . The current 2Γ  after 

the n-th iteration of the minimization process is 
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denoted by
n

Γ . Expression of the indicator 
A

ε  

in terms of boundary integrals is 

 

2

( )
1

( )

n
A

A

A

Γ
ε = −

Γ
, 0( ) d

y

S

A S S= ∫ ,      (14) 

where S  is an arbitrary sphere of radius 0.5 

that contains the defect. 

The knowledge of measured Stoneley 

signals is sufficient to determine the location 

and the defect. Our numerical experiments 

show that for M < 30, the genetic algorithm has 

no solution. For M above this value, we obtain 

two solutions independent of the number of 

generations. 

 

 
Fig. 2.  Snapshots of the propagation of 

Stoneley waves after 120 sµ  and 150 sµ , 

respectively. 

 

 
Fig. 3.  Snapshots of the propagation of 

Stoneley waves after 200 sµ  and 250 sµ , 

respectively. 

 

The genetic algorithm presents two solutions 

if number of generations is smaller than 107 

and one solution after 112 iterates. For 

example, after 107 iterates, two solutions are 

obtained for M = 50 (see Fig. 4). 

To get a single solution, we complete the 

genetic algorithm with a global minimisation 

procedure. So, the minimization algorithm has 

two steps: a genetic algorithm and a global 

minimisation procedure (quasi-Newton). 

 

 
Fig. 4. Number of solutions of the genetic 

algorithm depending on the number of 

generations. 

 

 
Fig. 5. Displacement 1u  in the interface 

with/without defects. 

 

The results obtained by genetic algorithm for 

M = 73 after 112 iterates, are used as input data 
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for a quasi-Newton algorithm. The final results 

give the size of the defect 0.98× 0.53 mm. The 

location is also obtained in a unique manner.  

The fitness value shows a closer 

correspondence of predicted and measured 

values of amplitudes. Fig.5 presents the 

displacement 1u  for the interface with/without 

defects. It is observed the difference between 

the response of the Stoneley waves when the 

interface contains a defect. 

 

4. CONCLUSIONS 

 

Stoneley’s waves occur at the interface 

between two solids.  The higher energy, as well 

as Rayleigh’s waves, is present in the interface 

and shows an exponential decay away from the 

interface. Stoneley waves are sharply 

attenuating outside of boundary. Properties of 

these waves show intensiveness of those waves 

which is considerably higher than of 

compressional waves. Their velocity is smaller 

than one of shear wave. 

The inverse approach for evaluation the 

quality of the adhesive layer is based on the 

sensibility of Stoneley wave to defects. The 

inverse problem minimizes the least square 

distance between computed and measured wave 

signals arriving to receiver. The minimization 

algorithm has two steps: a genetic algorithm 

and a global minimisation procedure (quasi-

Newton) in order to obtain a single solution.  

Based on the interaction of Stoneley waves 

with defects we show that it is possible to 

identify, in a unique manner, the location and 

size of the defect. 

 

REFERENCES  

  

[1] Light, G.M., Kwun, H., Nondestructive 

evaluation of adhesive bond quality, 

Southwest Research Institute, San Antonio, 

Texas, 1989.  

[2] Jones, J.P., Whittier, J.S., Waves at a 

flexibly bonded interface, Journal of Applied 

Mechanics, 905-909, 1967. 

 

[3] Claus, R.O., Kline, R.A., Adhesive bond 

line interrogation using Stoneley wave 

methods, Journal of Applied Physics, 50(12), 

8066-8069, 1979. 

[4] Franklin, H., Rousseau, M., Gatignol, P., 

Scholte-Stoneley Waves in a multilayered 

medium with elastic bond conditions at an 

interface, Physical Acoustics, pp 327-334, 

1991. 

 [5] Ting, T.C.T., Rayleigh waves, Stoneley 

waves, Love waves, Slip waves and one-

component waves in a plate or layered plate, 

Journal of Mechanics of Materials and 

Structures, 4(4), 631-647, 2009. 

[6] Ting, T.C.T., Steady waves in an 

anisotropic elastic layer attached to a half-

space or between two half-spaces - a 

generalization of Love waves and Stoneley 

waves, Math. Mech. Solids, 14(1-2), 52-71, 

2009.  

[7] Wang, L., Gundersen, S.A., Existence of 

one component surface waves in 

anisotropic elastic media, Phys. Scripta. 

47(3), 3394-404, 1993. 

[8] Shuvalov, A.L., General relationship for 

guided acoustic waves in anisotropic plates, 

P. Roy. Soc. Lond. A Mat., 460, 2049, 

2671–2679, 2004. 

[9] Shuvalov, A.L., Every, A.G., Some 

properties of surface acoustic waves in 

anisotropic-coated solids, studied by the 

impedance method, Wave Motion, 36(3), 

257–273, 2002. 

[10] Achenbach, J.D., Wave propagation in 

elastic solids, North-Holland Publ. Comp., 

Amsterdam, 1976. 

[11] Pham, C. V., Pham, T.H.G., On formulas 

for the velocity of Stoneley waves 

propagating along the loosely bonded 

interface of two elastic half-spaces, Wave 

Motion, 48, 46–56, 2011. 

[12] Qiang L,B., Lu, T., A Stoneley wave 

method to detect interlaminar damage of 

metal layer composite pipe, Frontiers of 

Mechanical Engineering, 10(1), 89–94, 

2015.

 
      

 

 



478 
 

 

 

 

 

  

 

O PROBLEMA INVERSA PENTRU EVALUAREA OBLIGATIUNILOR DE CALITATE 

PRIN UTILIZAREA UNDELOR STONELEY 

 
Abstract:  Lucrarea investighează evaluarea calității stratului adeziv pe baza sensibilitatii propagarii undelor Stoneley in 

prezenta defectelor. Problema inversă utilizeaza metoda celor mai mici pătrate pentru a minimiza distanta dintre 

semnalele de undă calculate și semnalele de unda inregistrate. Algoritmul de minimizare are doi pași: un algoritm 

genetic și o procedură globală de minimizare (cvasi-Newton), in scopul de a obtine o solutie unica. Bazându-ne pe 

interacțiunea undelor Stoneley cu proprietățile adezivului si cu defectul, arătăm că este posibil să identificam, într-o 

manieră unică, pozitia și dimensiunea defectului. 
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