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ADVANCED NOTIONS IN ANALYTICAL DYNAMICS OF SYSTEMS 
 

Iuliu NEGREAN 
 

Abstract: The dynamical study of the current and sudden motions of the multibody systems (MBS), as example the 

mechanical robot structure, and in accordance with differential principles typical to analytical dynamics of systems, is 

based, among others, on the advanced notions, such as: kinetic energy, acceleration energies of different orders and 

their absolute time derivatives of higher order. Advanced notions are developed in the direct connection with the 

generalized variables, also named independent parameters corresponding to holonomic mechanical systems. But, 

mechanically, the expressions of definition of the advanced notions contain on the one hand kinematical parameters 

and their differential transformations, corresponding to absolute motions, on the other hand the mass properties, 

highlighted by mass and mass center, inertial tensors and their generalized laws, as well as pseudoinertial tensors. 

By means of the especially researches of the author, in this paper will be presented reformulations and new 

formulations concerning the advanced kinematics parameters, as well as advanced notions such as: kinetic energy and 

acceleration energies of different orders in explicit and matrix form. They are corresponding to the current and sudden 

motions of MBS. These formulations will also contain the absolute time derivatives of higher order of the advanced 

notions, according to differential equations of higher order, typically to analytical dynamics of systems. 

Key words: analytical dynamics, mechanics, advanced notions, dynamics equations, robotics. 

 
1. INTRODUCTION 
 

The advanced dynamics study of the current 

and sudden motions of the multibody systems 

(MBS), example in Fig.1 the mechanical robot 

structure, and in accordance with differential 

principles typical to analytical dynamics of 

systems, is based on the advanced notions of 

dynamics, such as: kinetic energy, acceleration 

energies of different orders and their absolute 

time derivatives of higher order [6] – [17]. 

Advanced notions are developed in the direct 

connection with the generalized variables, also 

named independent parameters (d.o.f.). These 

univocally characterize the absolute motions for 

any holonomic mechanical systems. But, the 

expressions of definition of advanced notions of 

dynamics contain on the one hand the advanced 

kinematics parameters and their differential 

transformations, typically to absolute motions, 

on the other hand mass properties [1] – [20]. 

Based on especially of the author researches, 

in the three sections of the paper, reformulations 

and new formulations on the advanced notions 

of kinematics and dynamics will be presented 

considering the researches in [5] – [15] and [17]. 

So, the first section is devoted to the advanced 

kinematics parameters typical to MBS with 

current and sudden motions. In the view of this, 

matrix exponentials and the time derivatives of 

higher order will be applied on the kinematical 

parameters. These expressions will be used in 

the second section devoted to energies of higher 

order. So, kinetic energy, acceleration energies 

of different orders and their absolute time 

derivatives of higher order will be reformulated 

and formulated by new expressions. In the third 

section of the paper, the above advanced notions 

will be implemented in the dynamics equations 

of higher order typically to sudden motions. 

 
Fig.1 Robot Mechanical Structure (MBS) 
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2. ADVANCED KINEMATICS NOTIONS 
 

The kinematical and dynamical study from 

this paper [3], [4], [7] is oriented on mechanical 

structure with opened kinematical chain, where 

the kinetic ensembles i 1 n= →  are physically 

linked by driving joints of fifth order. (Example 

robot mechanical structure, see Fig.1 and Fig.2). 

Fig.2 Sequence of Kinetic Ensemble 

 

This is characterized by ( )n d.o.f . , according to: 

( ) ( ) ( )
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where ( )iq t  is the generalized coordinate from 

every driving axis. But, considering the current 

and sudden motions, the generalized variables 

of higher order are developed as follows: 
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and ( )m  represents the time deriving order. The 

main objective of this section consists in the 

establishment of the parameters of the advanced 

kinematics, typical to MBS with current and 

sudden motions. In the view of this, matrix 

exponentials and the time derivatives of higher 

order will be applied on kinematical parameters. 

These expressions will be used in second section 

devoted to energies and equations of higher order. 

According to researchers [5], [7] and [18], 

kinematical parameters, are expressed, among 

others, by means of the matrix exponentials 

functions. First of all, the position vector and 

rotation matrix and between { }i  and { }0  frames 

are below expressed with exponentials as: 

( ){ }{ }
i j

i k k k i
kj

p exp u q b
−

==

 
= × ⋅∆ ⋅∑ 

 
∑

1
0

01

;      (3) 

[ ] ( ){ } ( )

( ){ } ( )

i

j j j ii
j

i

j j j i
j

R exp u q R

exp u q R

=

=

   = × ⋅ ∆ ⋅ =∑      
  = × ⋅ ∆ ⋅   

∏

0 0 0

0
1

0 0

0
1

  (4) 

where ( )0

i0R corresponds to initial configuration of 

the multibody system. The column vector ib  of 

the expression (3), according to [5], [7], [18], is: 

( ){ } ( ){
( ) ( ) ( ) } ( )

0

i 3 i i i i

0 0 T 0

i i i i i i

b I q u 1 cos q

u u q sin q s
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 (5) 

In the previous equations, the symbols are used: 

{ }i i i iu x y z= ; ; & ( ) ( ){ } ( ) ( ) ( )
i i i i i is p u u= × ⋅∆ + −∆ ⋅

0 0 0 0
1 . 

They expresses the screw parameters also named 

the homogeneous parameters of the oriented axis 

{ }i  around of this the generalized coordinates are 

achieved. According to same papers [5] and [7], 

expressions of definition for angular velocities, 

and then angular accelerations of higher order are 

established on the basis of matrix exponentials: 
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{ }k 1; k 1;2;3;4;5; ...≥ =  is time derivative order. 

According to same [5] and [7], the expressions of 

definition for the linear velocities of the origin 

{ }iO i∈  and then linear accelerations of higher 

order are also expressed with exponentials as: 
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and         ( ) ( ){ }mk m j m j0; ; 1;δ = > ≤ ; 
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The using of matrix exponentials apparently 

seems to be complicatedly, but these have great 

advantages of not using reference systems. This 

observation is visible in the above equations, by 

the occurrence of homogeneous coordinates (6). 

These are corresponding to initial configuration. 

 In advanced kinematics and dynamics, the 

time derivatives of higher order for position 

vectors and rotation matrices must be used as: 
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where the symbols: ( )k  and ( )m are the orders 

of the time derivatives concerning (11) and (12). 

The advanced notions and equations from 

analytical dynamics [9] – [17] requires angular 

accelerations of higher order, as well as linear 

accelerations of higher order corresponding to 

mass center for every kinetic ensemble of MBS. 

According to Fig.3, first of all, the position of 

the mass center is defined in the classical form, 

and then on the basis of matrix exponentials as: 

( ) ( ) [ ]( ) i
C i Cii i
r t p t R t ρ= + ⋅

0
;        (13) 

Fig.3 Sequence of Kinetic Ensemble 
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Applying the time derivative on (13), the linear 

velocity of the mass center is obtained, thus: 
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Property (15) is according to papers [7] – [9]. 

Linear and absolute accelerations of higher order 

corresponding to mass center are below defined: 
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Position of terms from (18) must be respected, 

in the case of the time derivative of order ( )k , 

( ) ( )( ) ( )( ){ }
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According to [10] – [15], angular and linear 

velocities, as well as the accelerations of higher 

order (6), (7), (15) – (18) can be also established 

by means of the following vector time functions: 
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where (19) is identical with (13) / (14), and (22) 

is named the orientation vector for every kinetic 

ensemble, whose component (21) is known as 

angular transfer matrix defined as function of set 

of orientation angles. Considering (19) and (22) 

it observes that they are functions of generalized 

variables (2), taking into study the operator (23). 

Using researches from [10] – [14], on vector 

functions (19) and (22), differentials properties 

compulsory applied in advanced kinematics and 

dynamics have been developed as below follows: 
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The symbols (30) highlight time deriving orders. 

Using (19) – (30), the next expressions become: 
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The expressions (31) and (32) are identical with 

(15) and respectively (17) / (18), and they are 

referring to the linear velocity and accelerations 

of higher order, corresponding to mass center. 

The others, (34) are identical with (6) and (7) 

representing the angular velocities, and angular 

accelerations of higher order of kinetic ensemble. 

Analyzing all above parameters of advanced 

kinematics, it results that they are functions of 

generalized variables (1) / (2), as well their time 

derivatives. So, according to author researches 

they can be developed as time functions, using 

polynomial interpolating functions [3] and [7]. 

It proposes following functions of higher order: 
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For every trajectory interval ( )i 1 s= → , number 

of unknowns is ( )m 1+ , and their significance is: 
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The determination the unknowns (37) requires, 

in accordance with [3] – [7], the application of 

the geometrical and kinematical constraints as: 
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(38) 

Finally, the results (35) will be substituted in the 

advanced notions of kinematics and dynamics. 

 

3. ENERGIES OF HIGHER ORDER 
 

The phrase, “advanced notions” founded in 

the analytical dynamics, is focused in this paper 

on the motion energies whose central functions 

are the accelerations of higher order. They are 

developing in any sudden and transitory motion 

of the mechanical systems. Leading to Appell’s 

function, highlighted in 1899, [1] and [2], also 

named “kinetic energy of accelerations” [19], 

author has been developed new mathematical 

formulations on the expressions for acceleration 

energies of first, second, third and fourth order 

[6] – [14] and [17]. In this section they will be 

presented, in explicit and matrix form, and their 

kinematical parameters of higher order are well 

defined in the previous section of this paper. 

Fig. 4 Kinetic Ensemble from MBS 
For understanding the mechanical significances 

of the energies of higher order, at beginning the 

kinetic energy is defined, according to [3] – [6]. 

So, König’s theorem is devoted to explicit form: 
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To this, the operator is added with significance: 

( ) ( ) ( ){ }M∆ = -1;general motion ; 0; translation ; 1; rotation  

Expression of the kinetic energy (39) contains: 
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This is inertial tensor axial and centrifugal of the 

kinetic ensemble ( )i , in relation with frame { }i∗  

whose origin is the mass center iC  (see Fig.4). 

Considering the notions from previous section 

the total kinetic energy of MBS is written as: 
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The translational and rotation components are: 
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In the dynamic equations of higher order, the 

kinetic energy is included by means of the time 

derivative of higher order. It shows as follows: 
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4where k ≤ , and position of terms from (45) must 

be respected, referring to time derivative in (46). 

The matrix form of the kinetic energy shows as: 
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The mass matrix (inertia matrix) from (47) is: 
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Its components are determined with exponentials: 
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n
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 
=  
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, (51) 
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i
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k
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I M r
I I

M r M
σ

× =

 ⋅
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∑
4 4 1

; (52) 

where (52) is known as pseudoinertial tensor. 

Considering papers [6] – [14], in following 

the acceleration energies of order ( )p 1≥  will be 

defined. The starting equation shows as follows: 
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=
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L

&
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. (54) 

The expression (53) includes the inertia tensor 

planar and centrifugal, relative to the frame{ }i∗ : 

i i i

xx xy xz

i i i T i i i

pi i i yx yy yz

i i i
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I I I
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∗ ∗ ∗
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 
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∫ . (55) 

According to the scientific literature [1], [2], 

[6]-[14], [19] and [20] in 1879, Gibbs defines 

the differential equations of motion. In 1899, 

Paul Appell performs a detailed study on these 

equations. As a result, Gibbs-Appell equations 

were deduced. They are applied for holonomic 

and nonholonomic systems, where the kinetic 

energy was substituted through the acceleration 

energy or “kinetic energy of acceleration”, also 

known as Appell’s function. Unlike the studies, 

above mentioned, in the papers [6] – [14] the 

author was established the acceleration energy 

in a generalized form, corresponding to a MBS 

founded in the general motion. This was named 

acceleration energy of first order, according to: 
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∆

=

∗

=

∗

=

 =
 − ∆   = − ⋅ ⋅ ⋅ ⋅ + ⋅∆  
  

+∆ ⋅ ⋅ ⋅ ⋅ + 
 
  +∆ ⋅ ⋅ × ⋅ +  
 

+  

∑

∑

∑

& &&

&

& &

& &

&

(56) 
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(57) 

Considering the notions from previous section 

the two components (translational and rotation) 

of acceleration energy of first order show as: 
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According to [6] – [14], besides of the explicit 

form (56), for acceleration energy of first order 

has been demonstrated the matrix form, that is: 

( ) ( ) ( )[ ]( )
; ;

1

AE t t tθ θ θ =
& &&
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= ⋅ ⋅ ⋅
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& & & &( ) ; ; . 

Besides (48), in (62) is also included the matrix 

of centrifugal and Coriolis terms, according to: 

( ) ( )
( )
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and          
( ) ( )kjm kjm

kjm

A R A p
A R

 
=  
  

( )
0 0 0 0

,        (65) 

( ) [ ]{ } ( )
2

0

j m m

kjm kjk
A R

q q q
R A R

∂ ∂
=

∂ ⋅ ∂ ∂
 =   , 

( ) ( )
2

j m

k
kjm kj

m

p

q q
A p A p

q

∂

∂

∂
=

∂
 =  ⋅∂

. 

According to the author researches, [6] – [14], 

the sudden motion of MBS, the transient motion 

phases, as well as mechanical systems subjected 

to the action of a system of external forces, with 

a time variation law, are characterized by linear 

and angular accelerations of higher order (see 

previous section of paper). So, the acceleration 

energy of second order has been also developed. 

First of all, its explicit form is below shown as: 
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where           
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This can be also considered a generalization of 

König’s theorem of second order. According to 

[8] – [14], the matrix expression of acceleration 

energy of second order is also below defined: 
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Besides (48) and (63), within (69) and (70) the 

others dynamics matrices are also included as: 
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( ) ( ) ( )
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1
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1ijn n
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D t t t Matrix D

j n×
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& &&θ θ θ , (74) 
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θ θ θ θ θ
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  = ⋅ ⋅   = →  

& && && & , 

where   
( )max ; ; ;

n
k T

ijlm kij psk klm
k i j l m

D Trace A I A
=

 = ⋅ ⋅
 ∑ . (75) 

The study of advanced dynamics is extended on 

acceleration energy of third order. According to 

[10] – [14], author proposes explicit equation of 

the acceleration energy of third order thus: 
( ) ( ) ( ) ( ) ( ) ( )3 ; ; ; ;AE t t t t tθ θ θ θ θ  = 

& && &&& &&&&       (76) 

( ) { }
( )

( ) ( )
( ) ( )

1

2

1

1 1
1

1 3 2

1
3

2

3 3

2

5

M

i i

n
i T iM

i C C

iM
n

i T i i T
M i i i i i pi i

i

T T
i i pi i i i pi i

T

i i pi i i

T T
i i i i

M v v

I I

I I

I

I

ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω

∆

=

∗ ∗

=

∗ ∗

∗

∗

− ∆
= − ⋅ ⋅ ⋅ ⋅ ⋅ +

+ ⋅∆


+∆ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ × ⋅ +



+ ⋅ ⋅ × ⋅ + ⋅ ⋅ × ⋅ +

+ ⋅ × ⋅ ⋅ × −

 − ⋅ ⋅ ⋅ ⋅ ⋅ 

∑

∑

&&& &&&

&&& &&& &&& &&

& &&& & && &&&

&&& &

& &&&

( ) }
T T

i i i i i i

T T
i i pi i i i

I

I

ω ω ω ω

ω ω ω ω ω

∗

∗

 
 
 
 
 
  
 
 
 
  − ⋅ ⋅ ⋅ ⋅ +  
  + ⋅ ⋅ ⋅ × ⋅ +   

& &&&

&&&

 

( ) ( ) ( ) ( ) ( )3 2; ; ;AE t t t tθ θ θ θ +  
& && &&& . 

Similarly with the first two types of acceleration 

energies, it can also observe an extension of the 

generalization of König’s theorem regarding the 

acceleration energy of third order. According to 

[10] – [14], matrix expression of the acceleration 

energy of third order is defined as below follows: 
( ) ( ) ( ) ( ) ( ) ( )3 ; ; ; ;AE t t t t tθ θ θ θ θ  =
 

& && &&& &&&&         (77) 
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The dynamics matrices of third order, included 

in the equations (70) and (77), are defined as: 

( ) ( )
( )

; 4
ij

n n

i 1 n
N t t Matrix N

j 1 n
θ θ

×
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, (78) 
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T

4 T ijlmpr
ij

p 1 n
N

N t t r 1 n

l 1 n m 1 n

θ θ
θ θ θ θ

 = → 
⋅ ⋅    = ⋅ ⋅= →     = → = → 

& &
& & &  

where 
( )max ; ; ; ; ;

n
k T

ijlmpr kijl psk kmpr

k i j l m p r

N Tr A I A
=

 = ⋅ ⋅ ∑ ;(79) 

( ) ( )
( )

{ }4

1
; , 1

T

i
n

K t t Matrix K i nθ θ∗ ∗

×

  = = →
 

& ,      (80) 

( ) ( )4

1

; 1

1 ; 1

T
ijlmpT

i

m n
K

K t t p n

j n l n

θ θ
θ θ θ θ∗

 = → 
⋅ ⋅    = ⋅ ⋅= →   

 = → = → 

& &
& & &  

where  
( )

n
k T

ijlmp ki psk kjlmp

k i j l m p

K Tr A I A
=

 = ⋅ ⋅ ∑
max ; ; ; ;

   (81) 

( ) ( )
( )

0 0 0 0

kjlmp kjlmp

kjlmp

A R A p
A R

 
=  
  

,        (82) 
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2
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Considering (50) and (51), it observes that the 

components of the differential matrices (65), 

(73) and (82) included in (64), (72), (75), (79) 
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and (81) have been also determined by means 

of the matrix exponentials, developed within of 

the previous section, according to [10] – [14]. 

On the basis of the starting equation (53) and 

conditions (54), the author researches have been 

extended [14] on acceleration energy of fourth 

order. The starting equation is shown below: 

( ) ( ) ( ) ( ) ( )
( )

; ; ; ;
5

4
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∑

. 

The absolute time derivatives of fifth order for 

rotation matrix and position vector, included in 

the above equation, are determined with (11) 

and (12), where: k 5, and m 6= ≥ . But, the same 

result is obtained with the differential equation: 
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. (84) 

Equation (84) is exclusiveness considered, first 

of all, ( )R rotation, then ( )p position function. 

The differential matrices of various orders, 

included in (84), are determined in accordance 

with (65), (73) and (82), by means of the same 

matrix exponentials and their time derivatives. 

 

4. ADVANCED DYNAMICS EQUATIONS 
 

     When the mechanical systems (MBS) are 

dominated by sudden motions, as well as by the 

transitory motions, on the basis of the author's 

researches, in the previous section of the paper, 

it was demonstrated existing of acceleration 

energies of higher order. They are compulsory 

included in the dynamics equations of higher 

order, regarding the mechanical motion of MBS. 

First of all, Tsenov – Mangeron formulation on 

Lagrange’s equations of second kind are studied.  

Following the application of time derivatives of 

higher order ( )m  and ( )k , the motion differential 

equations, become new differential expressions: 
( )

( )
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( )

( ) ( ) ( )
( )
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C C

k 1 m
j

j

k 1 m
j

i

E E1 d
m 1

m qd t
q

Q t ; t ; ; tθ θ θ

−

−

−

  
∂ ∂  ⋅ − + ⋅ =   ∂
∂   

 
   

=   
&

L
ö
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But, considering the acceleration energy of first 

order (56) – (62) and time derivatives of higher 

order ( )m  and ( )k applied on the generalization 

of Gibbs – Appell, these equations are changed: 

( )
( )
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( ) ( ) ( )
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m 2

k 11k 1 m
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Ed
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ö
. (86) 

Author has proposed [13] – [14], the generalized 

differential equations of higher order in the case 

of the mechanical systems (MBS), dynamically 

characterized by sudden and transitory motions: 
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The necessary conditions in (87) are following: 

{ } { }{ }
{ }

( ) { }

pp 1 k ; 0 ; p 1 ; 1 ; p 1

and k 1; k 1;2;3; 4;5; .....

m k 1 ; m 2;3; 4;5; .....

δ = → = = >
  

≥ = 
 

≥ + =  

. (89) 

Generalized differential equations (87) contain 

acceleration energies of order ( )p 1 4= → , whose 

expressions of definition, in explicit and matrix 

form, are detailed presented in previous section. 

The symbol ( )i
iQ t
ö

 from equations (85) – (87) 

is the generalized inertia force. This is included 

in the equations of generalized driving forces: 
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i i i
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where ( )i
gQ t and ( )i

SUQ t are the generalized forces 

due to gravitation and manipulating from MBS. 

5. CONCLUSIONS 
 

The currently paper was devoted especially to 

presentation a few essential reformulations and 

new formulations concerning some notions from 

advanced kinematics and dynamics. These are 

compulsory included in dynamics equations of 

higher order, corresponding to the current and 

sudden motions in the case of multibody systems 

(MBS), for example mechanical robot structure.  

So, unlike the classical models the author has 

presented in first section of paper reformulations 

and new formulations regarding the parameters 

of the advanced kinematics. In the view of this, 

matrix exponentials and the time derivatives of 

higher order have been applied, concerning the 

linear and angular accelerations of higher order. 

In this section, important differential properties 

have been developed concerning position of the 

mass center and orientation vector. They are also 

used for determine the same linear and angular 

accelerations of higher order above mentioned. 

According to author researches, the parameters 

of advanced kinematics have been developed as 

time functions with the polynomial interpolating 

functions of higher order, defined in this section. 

These are required in the advanced notions and 

equations from analytical dynamics of systems. 

    The phrase, “advanced notions” founded in 

the analytical dynamics, is focused in this paper 

on the motion energies whose central functions 

are the accelerations of higher order. They are 

developing in any sudden and transitory motion 

of the mechanical systems. Leading to Appell’s 

function, also named “the kinetic energy of the 

accelerations” the author has been developed in 

the second section of paper new mathematical 

formulations on the expressions for acceleration 

energies of first, second, third and fourth order. 

For understanding the mechanical significances 

of the energies of higher order, at beginning the 

König’s theorem for kinetic energy has been 

presented in explicit and then matrix form. In 

this section kinetic energy and acceleration 

energy of first order have been also defined by 

means of the differential properties concerning 

position of the mass center and orientation 

vector well defined in the first section. The 

second section was also devoted to expressions 

of the acceleration energies of first, second, third 

and fourth order, in explicit and matrix form. 

When the mechanical systems (MBS) are 

dominated by sudden motions, as well as by the 

transitory motions, on the basis of the author's 

researches, in the previous section of the paper, 

it was demonstrated existing of the acceleration 

energies of higher order. They are compulsory 

included in the dynamics equations of higher 

order, regarding the mechanical motion of MBS. 

So, in the last section of the paper author has 

proposed the generalized differential equations 

of higher order, corresponding to dynamical 

behavior of mechanical systems characterized by 

the current, sudden and transitory motions. 
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NOȚIUNI AVANSATE ÎN DINAMICA ANALITICĂ A SISTEMELOR 
 

Studiul dinamic al mișcărilor curente și rapide ale sistemelor mecanice multicorp (MBS), spre exemplu structurile 

mecanice de roboți seriali și în conformitate cu principiile diferențiale specifice dinamicii analitice a sistemelor, se 

bazează, printre altele, pe noțiunile avansate, cum sunt: energia cinetică, energiile de accelerații de diferite ordine și 

derivatele absolute în raport cu timpul a acestora de ordin superior. Noțiunile avansate sunt dezvoltate în conexiune 

directă cu variabilele generalizate, de asemenea, denumite parametrii independenți corespunzători sistemelor mecanice 

olonome. Dar, sub aspect mecanic, expresiile de definiție ale noțiunilor avansate conțin pe de o parte parametrii 

cinematici și transformările lor diferențiale corespunzătoare mișcării absolute, iar pe de altă parte proprietățile 

maselor, evidențiate prin masa și centrul maselor, tensorii inerțiali și legea de variație generalizată a acestora, precum 

și tensorii pseudoinerțiali. Cu ajutorul, în special, cercetărilor autorului în această lucrare se vor prezenta reformulări 

și formulări noi cu privire la parametrii cinematicii avansate, precum și noțiunile avansate cum sunt: energia cinetică, 

și energiile de accelerații de diferite ordine în forma explicită și matriceală. Acestea corespund mișcărilor curente și 

rapide ale MBS. Aceste formulări vor conține, de asemenea, derivatele absolute în raport cu timpul de ordin superior 

ale noțiunilor avansate, conform cu ecuațiile diferențiale de ordin superior, specifice dinamicii analitice a sistemelor. 
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