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ADVANCED EQUATIONS IN ANALYTICAL DYNAMICS OF SYSTEMS 
 

Iuliu NEGREAN 
 

Abstract: The dynamical study of the current and sudden motions of the multibody systems (MBS), as example the 
mechanical robot structure, and in accordance with differential principles typical to analytical dynamics of systems, is 
based on the advanced notions, such as: generalized forces, kinetic energy, acceleration energies of different orders 
and their absolute time derivatives of higher order. Advanced notions are developed in the direct connection with the 
generalized variables, also named independent parameters corresponding to holonomic mechanical systems. But, 
mechanically, the advanced equations of dynamics contain on the one hand advanced notions from kinematics and their 
differential transformations, typically to absolute motions, and on the other hand mass properties and generalized forces. 

By means of the especially researches of the author, within of this paper will be presented reformulations and new 
formulations concerning the advanced kinematics parameters, as well as polynomial interpolating functions of higher 
order. In the following of the paper a few reformulations on fundamental theorems of dynamics and differential 
generalized principle of analytical dynamics will be presented. But, the fundamental aspect of this paper will consist in 
the fact that the author of the paper will propose generalized differential equations of higher order for any sudden and 
transitory motion. These equations contain acceleration energies of higher orders in generalized mathematical form. 

Key words: analytical dynamics, mechanics, advanced notions, advanced dynamics equations, robotics. 

 
1. INTRODUCTION 
 

The advanced equations from dynamics of 

the current and sudden motions of the multibody 

systems (MBS), example Fig.1 the mechanical 

robot structure, and according to differential 

principles from analytical dynamics of systems, 

are based on the advanced notions of dynamics, 

as: generalized active and inertia forces, kinetic 

energy, acceleration energies of various orders 

and time derivatives of higher orders [6] – [18]. 

Advanced notions are developed in the direct 

connection with generalized variables which are 

univocally characterized for holonomic systems. 

The advanced equations of dynamics contain on 

the one hand advanced notions from kinematics 

and their differential transformations, typically 

to absolute mechanical motions, and on the other 

hand mass properties and generalized forces. 

Based on especially of the author researches, 

in the fourth sections of the paper reformulations 

and new formulations on the advanced notions 

of kinematics and advanced dynamics equations 

are presented according to [6] – [15]. As result, 

first section of paper is devoted to the advanced 

kinematics for any current and sudden motion. 

In the view of this, time derivatives of higher 

order are performed on kinematical parameters. 

The second section is devoted to reformulations 

concerning fundamental theorems of dynamics. 

After a few transformations about theorems, the 

differential generalized principle of analytical 

dynamics is obtained. In the third and fourth 

sections of paper, author presents formulations 

concerning generalized active and inertia forces. 

But, the fundamental aspect of the fourth section 

consist in the fact that the author of the paper 

proposes generalized differential equations of 

higher order for sudden and transitory motions. 

These equations contain acceleration energies of 

higher orders in generalized mathematical form. 
 

 
Fig.1 Mechanical Robot Structure (MBS) 
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2. ADVANCED KINEMATICS OF MBS 
 

The kinematical and dynamical study from 

this paper [3], [4], [7] is oriented on mechanical 

structure with opened kinematical chain, where 

the kinetic ensembles i 1 n= →  are physically 

linked by driving joints of fifth order. (Example 

robot mechanical structure, see Fig.1 and Fig.2). 

Fig.2 Sequence of Kinetic Ensemble 
 

This is characterized by ( )n d.o.f . , according to: 

( ) ( ) ( )
T0

i; t q t ; i 1 nθ θ θ≠ =  = →   ,      (1) 

where ( )iq t  is the generalized coordinate from 

every driving axis. But, considering the current 

and sudden motions, the generalized variables 

of higher order are developed as follows: 
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and ( )m  represents the time deriving order. The 

main objective of this section consists in the 

establishment of the parameters of the advanced 

kinematics, typical to mechanical system (MBS) 

characterized by current and sudden motions. 

 Within of the advanced equations applied 

in kinematics and analytical dynamics, the time 

derivatives of higher order for position vectors 

and rotation matrices must be used as follows: 
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where the symbols: ( )k  and ( )m are the orders 

of the time derivatives concerning (3) and (4). 

The advanced notions and equations from 

analytical dynamics [9] – [18] requires angular 

accelerations of higher order, as well as linear 

accelerations of higher order, corresponding to 

mass center for every kinetic ensemble, Fig.3. 

Fig.3 Sequence of Kinetic Ensemble 

According to papers [7] and [18], expressions of 

definition for angular velocities, and then angular 

accelerations of higher order are established as: 
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{ }k 1; k 1;2;3;4;5; ...≥ =  is time derivative order, 

and ( )0
ik t  is the unit vector to each driving axis. 

The following property is according to [7] – [9]: 
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According to Fig.3, first of all, the position of 

the mass center is defined in the classical form: 

( ) ( ) [ ]( ) i
C i Cii i
r t p t R t ρ= + ⋅

0
;        (8) 

Applying the time derivative on (6), the linear 

velocity of the mass center is obtained, thus: 

( ) ( ) ( ) ( )C i i Ci i
v t v t t tω ρ= + × ;          (9) 

Linear and absolute accelerations of higher order 

corresponding to mass center are below defined: 
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Position of terms from (10) must be respected, 

in the case of the time derivative of order ( )k , 
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According to [10] – [18], angular and linear 

velocities, as well as the accelerations of higher 

order (5), (6), (9) – (10) can be also established 

by means of the following vector time functions: 
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( ) ( ){ }j j j0 for q linear ; 1 for q angular∆ = − − (15) 

where (11) is identical also with (8), and (14) is 

named the orientation vector for every kinetic 

ensemble, whose component (13) is known as 

angular transfer matrix defined as function of set 

of orientation angles. Considering (11) and (14) 

it observes that they are functions of generalized 

variables (2), taking into study the operator (15) 

devoted to character of the generalized variable. 

Using researches from [10] – [18], on vector 

functions (11) and (14), differentials properties 

compulsory applied in advanced kinematics and 

dynamics have been developed as below follows: 
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The symbols (22) highlight time deriving orders. 

Using (11) – (22), the next expressions become: 
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The expressions (23) and (24) are identical with 

(9) and respectively (10), and they are referring 

to the linear velocities and linear accelerations 

of higher order, corresponding to mass center. 

The others, (25) and (26) are identical with (6) 

and (7) representing the angular velocities, and 

accelerations of higher order of kinetic ensemble. 

When ( )i n= , the kinematical parameters of the 

last kinetic ensemble from MBS are obtained. 

They are operational velocities and accelerations: 
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The above expressions (27) represent the linear 

and angular velocities as well as accelerations of 

higher order ( )m  corresponding to motion of the 

last kinetic ensemble of MBS, with respect to 

absolute Cartesian frame [7] – [17]. To these, the 

locating matrix (28), for ( )i n= , is also added. 

     According to [4] and [7], Jacobian matrix, 

also named velocity transfer matrix, sometimes 

matrix of the partial derivatives of the locating 

equations is applied in kinematics and dynamics: 
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The components from (29) are corresponding to 

transfer matrices for angular and linear velocities 

and accelerations respectively, and (30) are the 

transfer relationships from one to another frame. 

The inverse of Jacobian matrix is determined as: 
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When the mechanical robot structure (Fig. 1) is 

dominated by sudden motions, generalized and 

operational accelerations of higher order are also 

developed. Considering researches [7] – [14], in 

this paper the following expressions become: 
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where ( )m  is the order of time derivatives, the 

symbol ( )
( )m

0 X t  represents the column matrix of 

the operational accelerations of higher orders, 

while ( )
( )m

tθ  is the column matrix of generalized 

accelerations of higher orders, according with: 
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Considering the mathematical models from [7], 

the Jacobian matrix (29) can be also determined 

with matrix exponentials. But, the components 

of (33) and (34) are based on rotation matrices 

and position vectors, according to (3) and (4). 

Their time derivatives of higher order show as: 
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Analyzing all above parameters of advanced 

kinematics, it results that they are functions of 

generalized variables (1) / (2), as well their time 

derivatives. So, according to author researches 

they can be developed as time functions, using 

polynomial interpolating functions [3] and [7]. 

It proposes following functions of higher order: 
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= → −  












 
 



(39) 

For every trajectory interval ( )i 1 s= → , number 

of unknowns is ( )m 1+ , and significance is (38). 

The determination the unknowns (38) requires, 

in accordance with [3] – [7], application of the 

geometrical and kinematical constraints (39). 

Finally, the results (36) will be substituted in the 

advanced notions of kinematics and dynamics. 

 

3. ADVANCED DYNAMICS THEOREMS 
 

     The fundamental theorems, corresponding to 

Newtonian Dynamics, are: motion theorem of 

the mass center (momentum theorem), theorem 

of the angular momentum and theorem of the 

kinetic energy in differential and integral form. 

These are according to scientific literature, for 

example [7] and [8]. Applying the notions from 

advanced kinematics, see previous section, the 

main objective of this section consists in a few 

reformulations of the fundamental theorems, in 

consonance with the general motion of MBS, and 

considering the mechanical aspects from Fig.3. 

     So, the motion theorem of the mass center is 

characterized by means of the next equation: 

i i ii C i C i C iM a M v M r F ∗⋅ = ⋅ = ⋅ =&&& ,        (40) 

where 
∗

iF  is the resultant vector of active forces 

applied on the kinetic ensemble ( )i , see Fig.3. 

Substituting the linear acceleration of the mass 

center with (23), the theorem (40) is changed as: 
( )

( )

( )

( )

1

1

1

1
i i

m m
k n

C C

i j j im m
j

j j

r r
M q q F

m
q q

∗
+

=
∗

=

 
∂ ∂ ⋅ ⋅ + ⋅ ⋅ =
 +
∂ ∂  

∑ && & . (41) 

The theorem of the angular momentum, relative 

to mass center (Euler’s equation) is defined by: 

( )i i i i i i i i i i

d
I I I I N

d t
ε ω ε ω ω∗ ∗ ∗ ∗ ∗⋅ + ⋅ = ⋅ + × ⋅ = .  (42) 

Substituting angular velocity and acceleration 

with (25) and (26), the theorem (42) is changed: 

( )

( )

( )

( )

( )

( )

( )

( )

1

1

1 1

1

1

m m
k n

i i
i j j j jm m

j
j j

m m
k n k n

i i
i j p j p im m

j p
j p

I q q
m

q q

I q q N

q q

ψ ψ

ψ ψ

∗

∗ ∗

+
=

∗

=

= =
∗ ∗

= =

  
∂ ∂  ⋅ ⋅∆ ⋅ + ⋅ ⋅∆ ⋅ +

  +∂ ∂   
 

    ∂ ∂    × ⋅ ⋅∆ ⋅∆ ⋅ ⋅ =
    ∂ ∂       

∑

∑∑

&& &

& &

(43) 

 

( ) ( )( ) ( )( ){ }iC ij p j p j p
where 0, q r ; 1, q ψ∆ = ∈ ∈ , (44) 

and 
∗

iN is the resultant moment of active forces, 

while iI
∗

 is inertia tensor axial and centrifugal, 

the both are in relation with the mass center. 
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The theorem of the kinetic energy in differential 
form is considered the most general theorem of 

dynamics. Its equation of definition is written as: 

i i
CdE dL= ,        

n n
i i

C

i 1 i 1

dE dL
= =

=∑ ∑ .         (45) 

The components from (44) have the expressions: 

i i

i T

C i C C i i i

1 1
E M v v I

2 2
ω ω∗= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ,       (46) 

( )

i

i

k n
Ci T

C i C j

j 1 j

k n
T

i
i i i i i j j

j 1 j

r
dE M a dq

q

I I dq
q

ψ
ε ω ω

∗

∗

=

=

=
∗ ∗

=

∂ 
= ⋅ ⋅ ⋅ + 

∂ 
 

∂ + ⋅ + × ⋅ ⋅ ⋅ ⋅∆ ∂ 

∑

∑
; (47) 

1 1

i

i

i T T
i C i i

k n k n
CT T i

i j i j j

j jj j

dL F dr N d

r
F dq N dq

q q

ψ

ψ
∗ ∗

∗ ∗

= =
∗ ∗

= =

 = ⋅ + ⋅ =
  

∂ ∂
⋅ ⋅ + ⋅ ⋅ ⋅∆ 
∂ ∂  

∑ ∑
; (48) 

where (46) and (47) are König’s theorem and the 

differential expression of the kinetic energy, and 

(48) elementary work. Expressions (46) – (48) 

are corresponding to general motion of MBS. 

Substituting (16) and (17) in (47) and (48), and 

left member from (41) and (43) in (47), theorem 

of the kinetic energy, under the differential form 

(45) finally is mathematically reformulated. 

     In the case of the multibody systems (MBS), 

with holonomic mechanical significance, a few 

conditions are applied on (45), (47) and (48): 

, ,

, , ,
j j

i i

q 0 dq 0 j 1 n

q 0 dq 0 i 1 n i j

≠ ≠ = → 
 

= = = → ≠ 
.       (49) 

They are referring to independent parameters in 

in the both finite and elementary displacements. 

After a few transformations on the differential 

of the theorem of the kinetic energy it obtains: 

( )

i

i

n
CT T

i i C

i 1 j

n
TT i

i i i i i i j

i 1 j

r
0 F M a

q

N I I
q

ψ
ε ω ω

∗

=

∗ ∗ ∗

=

  ∂ = − ⋅ ⋅ +   ∂ 
 

∂  + − ⋅ + × ⋅ ⋅ ⋅∆     ∂  

∑

∑

(50) 

According to author researches [7] – [18], for 

the multibody rigid system, expression (50) is 

considered the differential generalized principle 

(generalization of the D’Alembert ─ Lagrange 

principle) in analytical dynamics of systems. 

 

4. GENERALIZED DYNAMICS FORCES 
 

According to [3], [4], [7] and [17] on every 

kinetic ensemble ( )i 1 n= → , belonging to the 

mechanical robot structure, as integrated part 

from MBS, are especially applied a system of 

external and active forces, manipulating loads, 

as well as complex friction forces, see Fig.4. 

Fig.4 Generalized Forces in MBS 

In function of (static or dynamic) behavior in 

every physical link (driving joint of fifth order) 

generalized static or driving force is developed. 

 Using, among of these, the author researches 

[4] – [17], the main objective of this section 

consists in the presentation of the expressions 

of definition for the generalized forces due to 

gravitation and manipulating loads, as well as 

due to inertia property typically to MBS (Fig.4). 

So, considering [17], the expression of definition 

for generalized gravitational force shows thus: 

( ) ( ) ( )
ö

i

T
n 0 n 0i T

g g i XQ Q J ; i 1 nθ  = = ⋅ = →
  . (51) 

( )
( ) ( )

( ) i

Ti 0 0
g X

6 nn n

Diag Q J Matrix ; i 1 nθ θ
××

   = ⋅ = →   ö ; 

( ) ( ) [ ]

( ) ( ) [ ] ( )

( )

( ) ( ) ( )

i

i j

i i

n
0 n Tn 0

X j n
j i

n
0 n Tn 0 0

X j C nn
j i

Tn 0 n 0 n 0T T
X XXi

6 1

where F M R g

N M R r p g

F N

=

=

×

 
 = ⋅ ⋅
 
   = ⋅ ⋅ − ×  
 
  =  
  

∑

∑

ö

; (52) 

{ }

,

/ ,

T
0 0 g

0 0
g 0

and g g k k k

k g g k vertical unit vector 0

τ τ = ⋅ ⋅ = ⋅ 
 

= − ∈  

m

. (53) 

The column vector (52), expressed with respect 

to Cartesian space, is mechanically equivalent 

with reduction torsor of the gravitational forces 

in [ ]i ; n  interval in relation with the { }n  frame. 

This is applied in the geometry center of the 

last driving joint belonging to MBS (Fig. 4). 
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In keeping with the same paper [17] generalized 

manipulating force is below characterized with: 

( ) ( ) ( )

( ) ( ) ( )

T
n 0 n 0i T

SU SU i X

n 0 n 0

X

Q Q J ; i 1 n

J

θ

θ

  = = ⋅ = →   
= ⋅  

ö

ö

(54) 

( )

( ) [ ] [ ]
( )

( ) [ ]{ } [ ] ( ) [ ]

T0 0 T 0 T
X X X

6 1

n 0

n 1n 1
3 3 n 1

n 1
0 n T n 0 n

n 1
n 1nn n 1 n 1

where F N

R 0
f

n
R p R R

×

++
× +

+
+

+ + +

  = =  
 
  
   
 ⋅  
     ⋅ ×    

ö

(55) 

Cartesian column vector (55) is mechanically 

equivalent [4] – [8] with the reduction torsor of 

the manipulating load with respect to { }n  frame. 

Considering the aspects from [6] – [18], in 

the case of the dynamical behavior of MBS, in 

every driving joint, besides the active forces (see 

above expressions), are developing generalized 

inertia and driving forces. Finally, the expression 

of the generalized inertia force becomes thus: 

( )
( ) ( ) ( )

( ) ( ) ( )
i

i
n 1

T
i 0 T 0
i i X

Q t ; t ; t

Q t J t t ; i 1 n

θ θ θ
×

∗

   =
  

 
  = = ⋅ = →  

& &&
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; (56) 
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  = ⋅ = →   ö
ö ; 
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i
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j00

jX j
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j0 00 0 j

jX C n jj j
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where F N

F R F

 N r p R F R N

∗ ∗ ∗
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=
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=

 
  =   
  

= ⋅ 
 
 

= − × ⋅ + ⋅ 
  

∑

∑

ö

. (57) 

Column vector (57), expressed with respect to 

Cartesian space, is mechanically equivalent 

with reduction torsor of the inertia forces from 

[ ]i ; n  interval in relation with the { }n  moving 

frame, applied in the geometry center of the last 

driving joint from MBS (see Fig.4). 

 Comparing (51), (54) and (56) it observes 

that they have unique character. The generalized 

active and inertia forces are mathematically 

identical as form of expression. This aspect has 

important advantage, in the establishment of the 

dynamics equations of motion, corresponding to 

every kinetic ensemble of mechanical system. 

 The generalized driving force from every 

driving axis from MBS is finally obtained thus: 

( ) ( ) ( )

( ) ( )m

i 2 i i
m m i g

im
SU

m

Q t Q t Q t

1
1 Q t

1 3

θ

∆

∆ ∆

∆

∆

  = ⋅ ⋅ + +  
− 

+ − ⋅ ⋅ + ⋅ 

ö

; (58) 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( )

i

m
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n 0 n 0i T 2
m i m X

mn 0 n 0

X X

m

Q t J t t

1
t 1 t

1 3

θ

∆

∆ ∆

∆
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 − + + − ⋅ ⋅  + ⋅  
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; (59) 

( ) ( ) ( ){ }

{ } { }
m i i1; SU; M ; 0;SU ; 1; M

1; ; 0 ; 0; ; 0θ θ θ θ θ

 ∆ = −   
     ∆ = ≠ =          

& && & &&
(60) 

( ) ( ) ( ){ }i

f m m fd1; 1 ; 0; 0;1 ; 1;Q ∆ = − ∆ = − ∆ =  (61) 

( ) ( ) ( ) ( )f fi i 2 i

mf m f fd

f

1
Q t 1 Q t Q t

1 3

∆ ∆
∆

∆

−
= − ⋅ ⋅ + ⋅

+ ⋅
(62) 

where m∆  highlights: gravitational loads by ( )iM  

and manipulating loads by the symbol ( )SU ; f∆  

highlights the loads by m∆  and the influence of 

the complex frictions; θ∆  shows the behavior of 

mechanical system (0 – statics; 1 – dynamics). 

As a result, (62) for ( )i 1 n= →  constitutes the 

system of ( )n  generalized driving forces. They 

are identical with dynamics equations of MBS, 

in which the both generalized active and inertia 

forces, and the complex frictions are founded. 

 

5. ADVANCED EQUATIONS OF DYNAMICS 
 

In the case of mechanical systems (MBS) 

dominated by sudden motions, as well as by the 

transitory motions, on the basis of the author's 

researches [6] – [18] it demonstrates theoretical 

and experimental existing of the accelerations 

energy of higher order. They are substituted in 

the advanced equations of higher order from 

analytical dynamics. As a result, time variations 

of generalized forces, presented in the previous 

section, are obvious. So, considering the aspects 

from [17], generalized forces are time derived: 
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; (63) 
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. (65) 

The significance of the terms from (63) – (65) is 

well defined in the previous sections of this 

paper, and ( )k 1≥  is the time deriving order. But 

considering dynamical equations, instead of ( )k  

is written ( )k 1− . When ( )k 1= , then (63) – (65) 

are degenerated in: (56), (54), and last in (51). 

     Taking into study the differential generalized 

principle (50), generalized inertia and driving 

forces (56) and (58), dynamics equations are: 
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( )

1

1

1 1

i

i

i

n
Ci T

i i C

i j

n T
i

i i i i i j
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∑ ∑
(67) 

According to Lagrange’s equations of second 

kind, generalized inertia forces are identical as: 

( )jC C
i

j j

E Ed
Q t

dt q q

 ∂ ∂
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ö
;            (68) 
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E E1
m 1 Q t

m q
q

 
∂ ∂ 

⋅ − + ⋅ = ∂
 ∂ 

ö
.     (69) 

Expression (69) represents Tsenov – Mangeron 

formulation, and ( )m  is the time deriving order. 

Considering acceleration energy of first order 

[1] – [20] and time derivatives of higher order, 

generalized inertia forces are also identical with: 

( )
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A Awhere E E j 1 n k 1
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 = = → =
 
 ≥  + =   

,

,

; 

where according to [1] – [20], (70) is named 

generalization of Gibbs – Appell’s equations. 

     Using the author researches from [4] – [18] in 

the following of this section are presented the 

motion differential equations of various order. 

At beginning, time derivatives of first, second 

and third orders are applied on expression (66) 

and (67). After transformations they become: 
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The dynamics equations of order ( )m 2≥ : (72), 

(75) and (78) contain the acceleration energies 

of higher order ( )1 p 4≤ ≤ , whose expressions of 

definition are presented in the papers [6] – [18]. 

Following the application of time derivatives of 

higher order ( )m  and ( )k , the equations (69) and 

(70) are changed in new differential expressions: 
( )
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According to [9] – [14], sudden and transitory 

motions of MBS are represented by dynamics 

equations, and the central function is highlighted 

through acceleration energies of higher order. As 

result, considering acceleration energies of first, 

second, third and fourth order, and applying the 

time derivatives of higher order ( )m  and ( )k , on 

(72), (75) and (78), the dynamics equations are: 
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Acceleration energies of first, second, third and 

fourth order are defined in papers [10] – [18]. 

Author has proposed [13] – [14], the generalized 

differential equations of higher order in the case 

of the mechanical systems (MBS), dynamically 

characterized by sudden and transitory motions: 
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The necessary conditions in (86) are following: 

{ } { }{ }
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Considering (58), (73), (76) and (80), besides 

generalized inertia forces (72), (75), (78), (86), 

dynamics equations of higher order also contain 

the generalized gravitational and manipulating 

forces (64) and (65). According to [6] – [17], 

generalized gravitational forces of higher order 

are also determined with the next expression: 
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As a result, the advanced dynamics equations 

of higher order, defined by generalized driving 

forces from MBS are written as below follows: 
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Generalized differential equations (86) contain 

acceleration energies of order ( )p 1≥ . Using the 

aspects from Fig.3, starting equation shows as: 
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The author has demonstrated in various papers, 

for example [10]-[18], generalized expressions 

in the explicit and matrix form, for acceleration 

energies of various orders, considering general 

motion of the multibody rigid systems (MBS). 

 
6. CONCLUSIONS 
 

The currently paper was devoted especially to 

presentation a few essential reformulations and 

new formulations concerning some notions from 

advanced kinematics and dynamics. These are 

compulsory included in dynamics equations of 

higher order, corresponding to the current and 

sudden motions in the case of multibody systems 

(MBS), for example mechanical robot structure. 

So, unlike the classical models the author has 

presented in first section of paper reformulations 

and new formulations regarding the parameters 

of advanced kinematics. So, the time derivatives 

of higher orders were applied, concerning linear 

and angular accelerations of higher order. In this 

section, important differential properties have 

been developed concerning position of the mass 

center and orientation vector. They are also used 

for determine the same linear and angular 

accelerations of higher order above mentioned. 

According to author researches, the parameters 

of advanced kinematics have been developed as 

time functions with the polynomial interpolating 

functions of higher order, defined in this section. 

The main objective of second section was a few 

reformulations of the fundamental theorems, in 

consonance with the general motion of MBS: 

motion theorem of the mass center (momentum 

theorem), theorem of the angular momentum 

and theorem of the kinetic energy. After a few 

transformations was obtained the differential 

generalized principle in analytical dynamics. 

Unlike the classical approaches, in the third 

sections of this paper, the author presents 

formulations concerning generalized active and 

inertia forces. It observed that they have unique 

character namely they are mathematically 

identical as form of expression. These aspects 

have important advantage, in the establishment 

of the dynamics equations, corresponding to 

every kinetic ensemble from mechanical system. 

     In the fourth sections of this paper, the author 

presented the expressions for the generalized 

inertia forces of higher order. They are included 

in dynamics equations, whose central functions 

are the acceleration energies of various orders. 

But, the fundamental aspect of the fourth section 

consist in the fact that author has proposed the 

generalized differential equations of higher order 

for the sudden and transitory motions of MBS. 
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ECUAȚII AVANSATE ÎN DINAMICA ANALITICĂ A SISTEMELOR 

 

Studiul dinamic al mișcărilor curente și rapide ale sistemelor multicorp (MBS), spre exemplu structurile mecanice de 
roboți seriali și în conformitate cu principiile diferențiale specifice dinamicii analitice a sistemelor, se bazează pe noțiunile 
avansate, cum sunt: forțele generalizate, energia cinetică, energiile de accelerații de diferite ordine și derivatele absolute 
în raport cu timpul a acestora de ordin superior. Noțiunile avansate sunt dezvoltate în conexiune directă cu variabilele 
generalizate, de asemenea, denumite parametrii independenți corespunzători sistemelor mecanice olonome. Dar, sub 
aspect mecanic, ecuațiile avansate ale dinamicii conțin pe de o parte noțiuni avansate din cinematică și transformările 
diferențiale ale acestora, iar pe de altă parte proprietățile maselor și forțele generalizate. În special pe baza 
cercetărilor autorului, în această lucrare se vor prezenta reformulări și formulări noi cu privire la parametrii cinematicii 
avansate, precum și funcțiile polinomiale de interpolare de ordin superior. În continuarea lucrării se vor prezenta 
reformulări asupra teoremelor fundamentale ale dinamicii și principiul diferențial generalizat al dinamicii analitice. Dar, 
aspectul fundamental al acestei lucrări va consta în faptul că autorul lucrării va propune ecuațiile diferențiale 
generalizate de ordin superior pentru mișcările rapide și tranzitorii. Aceste ecuații conțin energiile de accelerații de ordin 
superior în forma matematică generalizată. 
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