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THE PATH PLANNING OF RTTRR SMALL-SIZED INDUSTRIAL ROBOT 

IN A PROCESS OF MICROPROCESSOR PACKING  
 

Ovidiu-Aurelian DETEȘAN 
 

Abstract: The paper presents the path planning of RTTRR small-sized industrial robot in a process of 

microprocessor packing, as a final stage in a modern manufacturing line. The work cycle consists in ten 

work phases, each phase being divided in minimum three path segments. The planning method is the (4-3-

4) polynomials method, whose aim is to determine the interpolation functions of the generalized kinematic 

parameters (coordinates, velocities and accelerations) with respect to time. Their union will represent the 

path of the industrial robot, corresponding to its work cycle.  
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1. INTRODUCTION  
 

The path of a robot is determined by the 

initial and the final position and orientation of its 

gripper, which mark the first and last path 

segments (end segments). In order to avoid the 

collision with the external obstacles within the 

robot’s workspace, a finite set of intermediary 

points is added, defining the intermediary path 

segments. The path-planning of RTTRR small-

sized industrial robot is analyzed in this paper. 

The robot was described from the CAD model 

perspective in [1]. Its workspace was modeled in 

[2]. The geometric and kinematic models are 

presented in [3], while the dynamic model de-

termination is performed in [4] and [5]. The 

robot is intended to be implemented in a process 

of microprocessor packing. The work cycle and 

the operating cyclogram, along with the work 

phases division and description, are presented in 

[6]. The path planning of the robot may be 

achieved using interpolation polynomials, of a 

higher or lower degree, according to the 

restrictions required by the technological pro-

cess the robot is implemented in. The methods 

of path planning described in [7], [8], [9], [10] 

make use of interpolation polynomials of the 3rd, 

4th, 5th and 6th degree, for the time-variation of 

the generalized coordinates. These methods are 

referred as: (4-3-4), 5-(4-3-4)-5, (5-4-6), 3n with 

restrictions, 3n without restrictions. The robot 

path of (4-3-4) type was implemented in [11] 

and applied to the robot Fanuc LR-Mate 100iB. 

 

2. (4-3-4) POLYNOMIALS METHOD 
 

 In the case of (4-3-4) path planning method, 

the end segments are interpolated by 4th degree 

polynomials and the intermediary segments by 

3rd degree polynomials (cubic spline functions). 

In order to apply this method, presented in detail 

in [7], [8] and [11], the work cycle of the robot 

must be split in phases, and each phase must be 

divided into at least 3 segments: two end 

segments and at least one intermediary segment.  

 Fig.1 presents the dividing of the 1st phase of 

the robot’s work cycle on path segments, 

corresponding to the first joint (rotation). The 

first path segment is interpolated by time 

dependent polynomial of the 4th order. Because 

the generalized velocity is determined by 

deriving the generalized coordinate function 

with respect to time, the function needed to 

express it is a 3rd degree polynomial. The 

generalized acceleration will be expressed, 

consequently, by a 2nd degree polynomial. In the 

following equations, 5,1=j  will denote the joint 

index, while ni ,1=  represents the path segment 

index, where n is the number of path segments 

each phase is divided in. 
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Fig. 1. The 1st phase of the 1st joint work cycle of the RTTRR small-sized industrial robot 

 

The interpolation functions for the 

generalized coordinate, velocity and 

acceleration specific to the first path segment, in 

the general case, are the following: 
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where 
i

i

t
t 1−

τ−τ
=    (2) 

is the normalized time and it spans the interval 

[0,1]. The following notations are also used: 

)(th ji , the normalized interpolation polynomial 

of the generalized coordinate, for joint j, 

segment i; 

)(tv ji , the normalized interpolation polynomial 

for the generalized velocity, corresponding to 

the joint j, segment i; 

)(ta ji , the normalized interpolation polynomial 

for the generalized acceleration, corresponding 

to the joint j and segment i; 

jika , the polynomial coefficients corresponding 

to the joint j, segment i, and the kth order term 

from the normalized polynomial function of the 

generalized coordinate ( 4,0=k  for end 

segments, 3,0=k  for intermediary segments). 

 The last path segment is interpolated by 4th 

degree polynomials also, but for a convenient 

determination of the polynomial coefficients, the 

following substitution is performed: 

 ]0,1[;1 −∈−= ttt . (3) 

The generalized parameters polynomials 

become the following: 
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 Being expressed in the variable 1+= tt , they 

can be described as: 
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For the intermediary segments, 1,2 −= ni , the 

interpolation functions can be generally 

expressed as follows: 
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The path of the robot is completely defined if 

one determines all the polynomial coefficients 

from the equations (1), (4) and (6). These 

coefficients are determined using the method 

exposed in [7], [8] and [11], by imposing, for 

each path segment, some restrictive conditions 

at both ends of each segment (initial and final 

restrictions), as well as continuity restrictions, in 

each intermediary point. 

By combining all the restrictive conditions 

and using some coefficients which yield directly 

from the restrictive conditions, a system of 

4+3(n-2) linear homogeneous equations can be 

set up. By solving this system, all the polynomial 

coefficients are determined. Replacing them into 

the equations (1), (4) and (6), the polynomials 

describing the generalized coordinates, 

velocities and accelerations are defined. 

 

3. THE PATH PLANNING OF THE ROBOT 
 

The above presented method will be applied 

in the case of the RTTRR small-sized industrial 

robot, implemented in a microprocessor packing 

process [6]. 

The joint j = 1 will be analyzed and the first 

phase will be split into n = 3 path segments, 

according to fig.1. The following initial 

conditions are imposed: 

• at the moment :00 =τ   
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• at the moment :s5,01 =τ   
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• at the moment :s12 =τ   
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• at the moment :5.1
3
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The directly computed coefficients are: 

 

.0;0;7854.0

2618.0)1(

0;0;0

132131130

11120

112111110

===

==

===

aaa

qa

aaa

 (11) 

The vector of the remaining unknowns is: 

        T
aaaaaaaX ][ 1341331231221211141131 =  (12) 

and the vector of the free terms is:  
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 The matrix of the unknowns’ coefficients is 

given numerically by: 

  





























=

1-      1     0     0     0     0      0

48-   24    24    8     0     0      0

8     6-    6     4     2     0      0

0      0     1     1      1     0      0

0     0     0     8-    0   48   24

0     0     0     0     2-    8     6

0     0     0     0      0     1      1

1
A . (14) 

 The unknowns’ vector is determined using 

the matrix equation: 

 1

1

1 1
BAX ⋅=

−
, (15) 

where the inverse of the coefficients matrix is 

computed as: 

 





























=
−

1.750    0.026-   0.188    0.500-   0.005    0.063-   0.250  

2.750    0.026-   0.188    0.500-   0.005    0.063-   0.250  

1.000     0.021    0.250    1.000-   0.021    0.250-   1.000  

0.750-   0.016-   0.188-   1.500    0.047-   0.563    2.250-

0.250-   0.005-   0.063-   0.500    0.026    0.313-   1.250  

0.250-   0.005-   0.063-   0.500    0.026    0.188    1.750-

0.250    0.005    0.063    0.500-   0.026-   0.188-   2.750 

1

1A

.(16) 
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Fig. 2. Interpolation functions graphs, for the joint 1, 

phase 1, segment 1, in normalized time 
 

 The following unknown polynomial 

coefficients are determined: 
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By replacing the coefficients determined in 

(11) and (17) into the equations (1), (4) and (6), 

the interpolation polynomials for the given task, 

corresponding to the first phase of the first joint 

of the robot are obtained. 

The first segment ( 10 τ→τ ) is characterized 

by the functions: 
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The following functions describe the second 

path segment ( 21 τ→τ ): 

 

Fig. 3. Interpolation functions graphs, for the joint 1, 

phase 1, segment 2, in normalized time 
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The third segment ( 32 τ→τ ) is described by 

the interpolation polynomials below: 
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The graphs of the interpolation functions, for 

the first joint (R), the first phase, on each path 

segment, in normalized time, are presented in 

fig.2 – fig.4 and for the whole phase, in real time, 

they are depicted in fig.5. 
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Fig. 4. Interpolation functions graphs, for the joint 1, 

phase 1, segment 3, in normalized time 

 

4. CONCLUSIONS 
 

For a serial robot, the path can be defined as 

the union of the polynomial functions describing 

the time variation of the generalized coordinates, 

velocities and accelerations for each joint, 

during the work cycle. Because of the limited 

extents of this paper, this work presents only the 

functions operating the first joint of the robot, in 

the first phase of the technological process. After 

determining all the functions for all the joints in 

all the work phases of the process, one can say 

that the path planning is complete. In this case, 

having three kinematic parameters, five joints, 

ten phases each with minimum three segments, 

this leads to a number of minimum 450 functions 

in normalized time and 150 functions in real 

time. In this study, all the functions 

corresponding to the first two phases of the 

technological process, for all the robot joints are 

determined, using a script written in MATLAB, 

based on the function inter434() described in [8]. 

 
Fig. 5. First phase of the work cycle for the joint 1, in 

real time 
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Planificarea traiectoriei minirobotului industrial RTTRR  

implementat într-un proces de ambalare a microprocesoarelor 
 

 

Rezumat: Lucrarea prezintă planificarea traiectoriei minirobotului industrial RTTRR implementat într-un 

proces de ambalare a microprocesoarelor, ca etapă finală într-o linie modernă de fabricație. Ciclul de lucru 

constă în zece faze, divizate fiecare în minim trei segmente de traiectorie. Ca metodă de planificare a 

traiectoriei se folosește metoda polinoamelor de interpolare de tipul (4-3-4), a cărei scop este determinarea 

funcțiilor de interpolare a parametrilor cinematici generalizați (coordonate, viteze și accelerații) în raport 

cu timpul. Reuniunea acestora va reprezenta traiectoria robotului industrial, corespunzătoare ciclului de 

lucru al acestuia. 
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