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Abstract: In the paper, will be established the driving moment for a translational robot axis based on ball 

screw transmission. It is presented a detailed dynamic study of transmission gearing, and implicit a 

rigorous determination of the dynamic control functions, along the cinematic chain of the mechanical 

robotic system. The study is a fundamental aspect, with deep implications in optimal robot design in 

terms of sizing, power consumption and accuracy. 
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1. INTRODUCTION  

 
In achieving high performance of any 

mechanical structure, an important role is 
assigned to the transmission elements that make 
the connections between the mechanical system 
components. The mathematical modeling 
process is based on simplifying assumptions, in 
order to obtain workable and easy to use 
dynamic equations. One of the assumptions is 
the rigidity of the component elements of the 
structure, according to which the relative 
position and orientation of the components of 
each kinetic assembly does not change during 
the operation of the system. Another hypothesis 
is linked to negligible clearances, included in the 
precision of the mechanical ensemble.  

The establishing of dynamic equations for a 
robotic system, mean to determine the motion 
equations for the constituting elements of the 
assembly, using fundamental notions in the 
advanced mechanics of the mechanical 
systems. A complete dynamic model includes 
the dynamic model of the robot's driving 
system and the dynamic model of the 
transmission chain. 

In the first part of the paper, based on the 
differential principles of advanced mechanics 
specific to mechanical olonomous systems, 
there is considered in Figure 1, a R2T serial 
robot structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using advanced notions as the acceleration 
energy as presented in [1] and [2] there will be 
established analytically the generalized driving 
force for a horizontally axis. In the second part, 
there will be analyzed the transmission chain, 
whereas regardless of the type or complexity 
degree of the application where is implemented 
the robot structure, the performance accuracy 
imposed are increasingly larger. The third part is 
dedicated to graphically representation of the 
kinematical parameters and the driving moments 
for the considered axis, in the case of a working 
task performed by the robot. 

Fig. 1 The R2T proposed serial structure 
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2. THE GENERALIZED DRIVING FORCE 

FOR A SERIAL ROBOT STRUCTURE 
 

In order to determine the dynamics equations 
for the considered axis, according to [1]-[3], the 
moving differential equations for any 
mechanical system can be established by means 
of the differential principles considered as 
fundamental notions in the study of the 
dynamics of mechanical systems with links, on 
the basis of which is expressed the generalized 
driving force, as being: 

i i i i
m i g SUQ Q Q Q∗ = + +

F
                (1) 

where, i
iQ
F

is the generalized inertia force, i
SUQ  

is the generalized handling force, i
gQ  and i

mQ ∗  are 

generalized gravitational and generalized driving 
forces, which are characterizing every i 1 3= →  
driving joint of the proposed robot structure. In 
the study, there is used as fundamental notion 
of advanced mechanics the acceleration energy, 
which is integrated in the following expression 
of the generalized inertia force [1]: 

n
i iA
i A

i 1i i

E
Q E

q q =

∂ ∂  
= = ∑ 

∂ ∂  && &&
F

;                    (2) 

where, ( )i i
A A j j jE E q ;q ;q ; j 1 i= = →& &&  and 

( )j j jq ;q ;q& &&  are generalized coordinates, 

velocities and accelerations, for each joint of 
robot. 

In the expression (1), the term i
iQ
F

 is 

substituted by (2) based on acceleration energy, 

( )i
A j j jE q ;q ;q ; j 1 i= →& &&  [1], [4] of each kinetic 

link belonging to mechanical structure, 
expressed as: 
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& && &&

& &

&

(3) 

In (3), iM  is the mass corresponding to each 

kinetic link of the robot, i *
iI  represents the axial 

centrifugal inertia tensor and i
piI  the inertia 

tensor planar centrifugal that characterizes the 
entire kinetic assembly ( )i , relative to the 

frame{ }i , applied in the mass center of each 

link iC . In the same expression, i
Ci

v and 

i
Ci

v& are the velocity and the acceleration of 

mass center, i
iω and i

iω&  are the angular 

velocity and acceleration of the kinetic link ( )i  

relative to the moving frame { }i  attached to the 

robot. [2] 
On the basis of expression (3), by 

particularization, the total acceleration energy 
for the considered R2T serial structure, is: 

( ) ( ) ( )

{
}

3
i

A A j j j
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3 2
3 3 3 3
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(4) 

where i isq sin(q )= and i icq cos(q )= . 

According to [4], there are determined for the 
second translational axis (see Figure1): 

( ) ( ) ( )
T2 0 0

2 2 X2

C C A
2

2 2 2

Q J

E E Ed
3,6824 q

dt q q q

∗θ = θ ⋅ θ =

 ∂ ∂ ∂
= − = = ⋅ 

∂ ∂ ∂ 
&&

& &&

F
F

(5) 

( )2
gQ 0θ =                           (6) 

( )2
SUQ 0θ =                          (7) 

the generalized inertia force (5), gravitational 
force (6), and the generalized handling force (7), 
for the kinematic axis belonging to the structure. 

Substituting (5)-(7) in (1), the dynamic 
equation for the considered robot axis, is: 

2
m 2Q 3,6824 q∗ = ⋅&&                             (8) 

and represents the the generalized driving force 
in analytical form on the output shafts of 
driving motor. 

The generalized force previously established 
by (8), is corresponding to the second axis, and 
will be included in the expression of driving 
moment, necessary to move the kinetic axis. 
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3 DRIVING MOMENTS FOR SECOND 

KINEMATIC AXIS OF R2T ROBOT 
 

Further there is analyzed, the translation 
along 2x  axis of the R2T serial structure, 

presented in Figure1. In order to realize the 
translation, the transmission gearing consisting 
in a worm gear which meshes with a toothed 
wheel, fixed jointly with the ball screw`s nut.  

The analysis of the motor torque required to 
move the second coupling is expressed as the 
driving moment of the nut generated by the 
axial force of the contact between the worm 
and the worm gear. There is considered the first 
subassembly consisting of the screw that 
performs a rotation motion, and the nut that 
performs the translation, as in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

According to [5], in ball screw transmission 
the stress is manifested by an axial force 
transmitted through balls, considered uniformly 
spread over the number of balls bn  of the 

working area, along the in  axis (line joining 

the points of contact between the ball – nut, 
respectively ball – screw) 

 
3.1 Establishing of screw`s driving moment  
 

The driving moment necessary to translation 
motion is due to the torque of the screw, which 
is generated by the axial force of the contact 
between the worm and the worm wheel. First, 
is determined the driving moment of the nu, 
then is established the axial force at the contact 
between worm and the worm wheel. 

In concordance with Figure 3 depending on 
the helix of the nut’s thread pα , there is written: 

p 2
p

p p 2p

p q
tg

2 r r q
α = =

⋅ π ⋅ ⋅
                (9) 

where pr is the radius of the nut, pp  thread pitch 

of the nut, and 2q  the generalized coordinate. 

 
 
 
 
 
 
 
 
 
 
 
In keeping with the previous expression, the 
rotation angle of the screw is determined as: 

2p 2
p

2
q q

p

⋅ π
= ⋅                       (10) 

where ( )2 2q q= τ  is a polynomial function of 

the robot coordinates from the driving joint [2] 
hence, the angular velocity and acceleration of 
the screw are expressed: 

( ) ( ) ( ) ( )2p 2 2p 2
p p

2 2
q q ; q q

p p

⋅π ⋅π
τ = ⋅ τ τ = ⋅ τ& & && &&  (11) 

According to Figure 2, and knowing the 
number of the balls contained by the ball screw 
assembly bn , as well as the rolling friction 

coefficient sbpµ  between the screw-balls, 

respectively balls-nut, is determined the 
generalized driving force of the ball screw as: 

   ( )
nb2

m i p sbp p
i 1

Q N c s
=

= ⋅ α − µ ⋅ α∑            (12) 

where θ  represents the contact angle, having a 
direct influence on this type of transmission. 

According to [6], the optimal value of the 
contact angle is 0θ = , but considering that it is 
very difficult from technological point of view 
the achievement of this value, the producing 
companies are realizing these transmissions 
with a value of 4θ = π . Knowing the fact that 
between balls and screw/nut is appearing a 
rolling friction, the resistant moment in the 
screw-nut assembly, is: 

n nb b2
mfp i p p sbp i p p

i 1 i 1
nb

r pi
i 1

Q N r s N r c

M s c 0

= =

=

+ ⋅ ⋅ α − µ ⋅ ⋅ ⋅ α −∑ ∑

− ⋅ θ⋅ α =∑

(13) 

In the previous relation, the rolling friction 
moment is expressed as following: 
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Fig.3 The ball-screw evolvent 
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Fig. 2 The transmission assembly along 2xO  axis 
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r i b sbpi
M N r= ⋅ ⋅µ                  (14) 

where, br  is the radius of a ball. 

Substituting the expression of the rolling 
friction moment in (13), the resistant moment 
in the screw-nut assembly is rewritten in final 
form as: 

p sbp p2 2
mfp m p

p sbp p

pb
sbp

p p sbp p

c s c
Q Q r

c c s

cr
s

r c c s

θ⋅ α −µ ⋅ α
= − ⋅ ⋅ −

θ⋅ α + µ ⋅ α

α 
− ⋅µ ⋅ θ⋅ 

θ⋅ α + µ ⋅ α 

(15) 

Knowing the radius of the worm wheel 2mr  

(fixed with the nut), and pr  the radius of the 

nut, there can be approximated the mechanical 
axial inertia moment of the assembly screw-
worm wheel, equivalent with: 

2 2
p p2 2m 2m

2p

M r M r
I

2 2
∗

⋅ ⋅
= + ,            (16) 

where pM  and 2mM  are the mass of the nut, 

respectively of the worm wheel. 
According to the same Figure 2, in keeping 

with angular momentum theorem, there is 
written the identity: 

 ( ) ( ) ( )2 2 2
2p 2p mp mfpI q Q Q∗ ⋅ τ = τ + τ&&        (17) 

Considering the mechanical axial inertia 

moment of the assembly nut-worm wheel 2
2pI∗ , 

defined with (16), as well as the angular 
acceleration of the ball screw (11), the driving 
moment of the ball screw is:  

( ) ( ) ( ) ( )

( )

2 2 2 2
mp 2p 2p mfp 2p 2

p

p sbp p2
m p

p sbp p

pb
sbp

p p sbp p

2
Q I q Q I q

p
c s c

Q r
c c s

cr
s

r c c s

∗ ∗ ⋅π
τ = ⋅ τ − τ = ⋅ ⋅ τ +

θ⋅ α −µ ⋅ α
+ τ ⋅ ⋅ −

θ⋅ α +µ ⋅ α
α 

− ⋅µ ⋅ θ⋅ 
θ⋅ α +µ ⋅ α 

&& &&

 

(18) 

 
3.2 Establishing the axial force at the contact 

between the worm and the worm wheel  
 

To determine the axial force at the contact 
between the worm and the worm wheel, there is 
considered the second assemble presented in 
Figure 4.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Further is determined the angular velocity 

and acceleration of the worm, and implicitly of 
the shaft of the driving motor, as: 

( ) ( ) ( )

( ) ( )

2

2M 2m 2 2m 2
2M 2M p

2

2M 2m 2
2M p

2 4
q r q r q ;

p p p

4
q r q

p p

⋅π ⋅π
τ = ⋅ ⋅ τ = ⋅ ⋅ τ

⋅

⋅π
τ = ⋅ ⋅ τ

⋅

& & &

&& &&

(19) 

where 2Mp is the worm`s step. 

The axial force at the contact between the 
worm and worm wheel is: 

( ) ( )2 2
mpM mp

2m

1
Q Q

r
τ = ⋅ τ              (20) 

In keeping with the fact that are known the 
values of the helix of the worm 2Mα , as well as 

the sliding friction coefficient 2Mµ  between the 

worm and worm wheel, there can be written: 

( ){

( )
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mfpM m p

p sbp p
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sbp

p p sbp p

2 2M 2M 2M 2M
2p 2

p 2m 2M 2M 2M

c s c
Q Q r

c c s
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s

r c c s

r s c2
I q

p r c s
∗

θ⋅ α −µ ⋅ α
= − τ ⋅ ⋅ −

θ⋅ α +µ ⋅ α
α 

− ⋅µ ⋅ θ⋅ −
θ⋅ α +µ ⋅ α 

α −µ ⋅ α⋅π 
− ⋅ ⋅ τ ⋅ ⋅ α +µ ⋅ α

&&

(21) 

is the resistant moment of the worm wheel.  
 

3.3 Determining the driving force that moves 

the nut 
 

The resistant moment from ball screw 
assembly becomes driving moment for the 
screw, as shown in Figure 5. In order to 
establish the driving force that moves the nut, 
further there will be written the dynamic 
equilibrium equations for the nut.  
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Fig. 4 The gearing wheel –worm 
wheel of the second translation  
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According to Figure 5, it results: 
2 2 2 jos 2 sus

2x mfp 2 2 2 2

2 2 sus 2 jos
2y 2 2

n Q N d N d 0

f N N 0

+ − ⋅ − ⋅ =

+ + =
    (22) 

 
( )

( )

2 sus 2 2 2
2 2x mfp 2y

2

2 jos 2 2 2
2 2x mfp 2y

2

1 1
N n Q f

2 d 2

1 1
N n Q f

2 d 2

 
= ⋅ + − ⋅ ⋅ 

 
 = ⋅ + + ⋅
 ⋅ 

 (23) 

In previous expressions, there is known that: 
2 sus 2 jos

2 sus 2 jos2 2
2 2

2T 2T

T T
N , respectively N= =

µ µ
, 

where the term 2T 0,007µ =  is the sliding friction 

coefficient from the transversal guiding lines. [7]. 

The link force 2
2yf , contains the velocity 

vector of the gravitational forces ( )0
X2

F , 

handling force ( )0
XF  and respectively the 

inertial generalized forces ( )0
X2

F∗ , as results 

from the following: 

[ ] ( )22 0 0 0
2 X X0 2 X2

f R F F F∗= ⋅ + + ;      (24) 

where, [ ]2

0
R  is the inverse of the rotational 

matrix between moving frame { }i 2= , and 
fixed frame { }0 . [1] 

The moment of linkage forces between the 
elements ( )i 1−  and ( )i  , applied to the origin 
of the frame { }i is: 

[ ] ( )22 0 0 0
2x X X0 2 X2

n R N N N∗= ⋅ + +      (25) 

and contains the resultant moments of the 
gravitational, handling and inertia system of 
forces. 

The driving force necessary to generate the 
translation motion along 2x  axis of the nut is: 

( )

( )

2 2 2 sus 2 jos
m m 2T 2 2

2 22T
m 2x

2

p
2T p p

2

Q Q N N

Q n
d

r
1 tg

d

∗

∗

= + µ ⋅ + =

µ 
+ ⋅ 

 =

− µ ⋅ ⋅ α − ϕ

          (26) 

3.4 Establishing the driving moment of 

motor shaft 

Considering the mechanical inertia moment 

of the worm 2
2MI∗  with respect to rotation axis, 

the differential equation of motion according to 
the angular momentum theorem, is: 

( ) ( ) ( )2 2 2
2M 2M M mfpMI q Q Q∗ ⋅ τ = τ + τ&&        (27) 

The previous expression, conducts to 
determination of the moment on the driving 
motor`s shaft, as: 

( ) ( )

( ){

( ) ( )

2
2 2
M 2M m 2

2M p

p sbp p2
m p

p sbp p
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sbp

p p sbp p
2 2M

2p 2 2M 2M
p 2m

4
Q I r q

p p
c s c

Q r
c c s

cr
s

r c c s
r2

I q tg
p r

∗

∗

⋅ π
τ = ⋅ ⋅ ⋅ τ +

⋅

θ⋅ α − µ ⋅ α
+ τ ⋅ ⋅ −

θ⋅ α + µ ⋅ α
α 

− ⋅µ ⋅ θ ⋅ +
θ⋅ α + µ ⋅ α 

⋅ π 
+ ⋅ ⋅ τ ⋅ ⋅ α − ϕ



&&

&&

(28) 

where 2
mQ is the expression of the driving force 

which moves the nut, expressed with (26). 
 

4. APPLICATION 
 

To represent graphically the variation of the 
driving moments, will be considered a sequence 
from a working process of the considered 
structure. To study the dynamic behavior of the 
structure, between two intermediary points, on 
a working sequence, there is used (3n) type 
polynomial interpolating functions. The (3n) 
type polynomial interpolating functions are 
consisting in generation of linear functions with 
respect to time for generalized accelerations in 
the considered axis of the robot. 

According to [8], [9], [4] is generated a 
linear function with respect to time as: 

( ) ( ) ( )m m 1
2m 2m m 1 2m m

m m

q q q
t t

−
−

τ −τ τ−τ
τ = ⋅ τ + ⋅ τ&& && &&  (29) 

where m m m 1t −= τ − τ  represents the duration 

of each ( )m 1 3= → segment of the trajectory. 

Fig. 5 The generalized forces in ball-screw assembly  
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The unknowns are the generalized accelerations 
at m 1−τ  and mτ , defined as: 

( ) ( )2m m 1 2m 1 2m m 2mq q ; q q− −τ = τ =&& && && && .   (30) 

After a few transformations, are obtained the 
functions for generalized velocities and 
coordination as shown:  

( )
( ) ( )

2 2
m m 1

2m 2m 1 2m
m i

2m m 2m 1 m
2m 2m 1

m m

q q q
2 t 2 t

q t q t
q q

t 6 t 6

−
−

−
−

τ −τ τ−τ
τ = − ⋅ + ⋅ +

⋅ ⋅
   

+ − ⋅ − − ⋅   
   

& && &&

&& &&

 (31) 

( )
( ) ( )

( ) ( )

3 3
m m1

2m 2m1 2m
l i

2m m 2m1 m
2m m1 2m1 m

m m

q q q
6 t 6 t

q t q t
q q

t 6 t 6

−
−

−
− −

τ −τ τ−τ
τ = ⋅ + ⋅ +

⋅ ⋅

   
+ − ⋅ ⋅ τ−τ + − ⋅ ⋅ τ −τ   
   

&& &&

&& &&
 
(32) 

In order to express the driving moments of 
the mobile structure, the input parameters for 
study are presented as follows in the Table 1, 
where is considered that the first sequence is a 
translation along +Ox, and the second sequence 
is a translation along -Ox. 

Table 1 

Seq. 
Time 

m sτ  
Duration 

mt s  

Coordinates 
values 

2mq m  

Translation
along +Ox 

9 0 0,125 
10 1  
11 1  
12 1 0,25 

Translation
along -Ox  

35,5 0 0,25 
36,5 1  
37,5 1  
38,5 1 0,125 

On the basis of the parameters presented in 
Table 1 in keeping with (30)-(32), are 
determined the expressions for coordinates, 
velocities and accelerations as seen in Table 2. 
 

Table 2 

S
ec

q
. 

Expressions for generalized coordinates, 

velocities and accelerations 

2mq m  2mq m s&  2
2mq ms&&

 

T
ra

n
sl

a
ti

o
n

 a
lo

n
g
  

+
O

x
 30,21 ( 9)

0,125

⋅ τ −

+

+  20,063 ( 9)⋅ τ −  0,125 - 1,125⋅ τ  
3 20,042 1,312

13,69 47,44

− ⋅ τ + ⋅ τ

− ⋅ τ +

 

20,125

2,63 13,69

− ⋅ τ

+ ⋅ τ −

+   2,625 - 0,25 ⋅ τ  

30,021 ( 12) 0,25⋅ τ − +

 
20,0625 ( 12)⋅ τ −   0,125  - 1,5⋅ τ  

S
ec

q
. 

Expressions for generalized coordinates, 

velocities and accelerations 

2mq m  2mq m s&  2
2mq ms&&

 

T
ra

n
sl

a
ti

o
n

 a
lo

n
g
  

-O
x
 0,25 0,021 ( 35,5)− ⋅ τ −

 

20,0625 ( 35,5)− ⋅ τ −

 

4,4375 - 0,125 ⋅ τ

 
3 20,042 4,63

171,032 2106,89

⋅ τ − ⋅ τ

+ ⋅ τ −

 

20,125 9,25 171,0313⋅ τ − ⋅ τ +

 
0,25  - 9,25⋅ τ  

0,125 0,021 ( 38,5)− ⋅ τ −

 

20,0625 ( 38,5)− ⋅ τ −

 

4,8125 - 0,125 ⋅ τ

 
 

On the basis of Table 2, there are 
represented graphically, the generalized 
coordinates, velocities and accelerations, as in 
Figure 6 and Figure7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2q m

sτ

sτ

2q m s&

2
2q m s&&

sτ

Fig. 6 The variation of kinematical parameters in 
translation along  +Ox 
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Taking into account the expression (28), 

where are known all the constructive and 

dynamic parameters of the component parts of 

the transmission gearing [4], and the input data 

contained in Table 1 and Table 2, there are 

determined the numerical value for the driving 

moments on the motor shaft, necessary to move 

the axis: 

( )x/ x
M 2Q 0,04719029335 q -

                   -0,0000004469021

+ − τ = ⋅&&      (33) 

As it can be seen from previous expression, 

(33) the total driving moment, has a dynamic 

respectively a static component.  

On the basis of the same expression (33) are 
represented graphically the variation for the 

driving moments, as results from Figure 8 and 
Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. CONCLUSION  
  

The paper presents a detailed study 
concerning the dynamic behavior of a 
translational robot axis based on ball screw 
transmission. Using the acceleration energy as 
fundamental notion and the algorithm of 
generalized forces, in the first part of the paper 
it was analytically established the generalized 
driving moment for a horizontally axis 
belonging to a serial robot, without taking into 
account the transmission system of the structure 
from the driving motor to the kinematic chain. 
This generalized driving moment, had been 
included in the expression of the driving 

2q m

sτ

sτ
2q m s&

2
2q m s&&

sτ

Fig. 7 The variation of kinematical parameters in 
translation along  -Ox 

 

 

 

Fig. 8 The variation of driving moment in  
translation along  +Ox 
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Fig. 9 The variation of driving moment in  
translation along  -Ox 
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moment of the motor shaft, established in the 
second part of the paper.  

In the second part, was analyzed the 
transmission gearing, in keeping with the motion 
transmission chain. Hence, it has been presented 
the transmission gearing consisting in a worm 
gear which meshes with a toothed wheel, fixed 
with a ball screw, which interacts with a nut. 
For each subassembly, there have been 
established the analytical form of the moments, 
in keeping with the parameters of the 
considered kinematic axis, with the observation 
that in determining of the moments it were 
considered the specific existing frictions in 
mechanical transmission system.  

In the last part of the paper, the analytical 
form of the driving moment motor it has been 
represented graphically. For this, it was 
considered two sequences of working task for 
the robot. The trajectory on considered 
sequences was divided into three segments, for 
each sequence, having as input data the 
displacement of the kinetic link and the 
correspondent time. Using the ( )3n  type 

polynomial interpolating functions there have 
been established the variation laws for 
accelerations, component of the driving 
moment on the motor shaft.  

An important remark is that generally 
through an accurate and real determination of 
the driving moment the motors necessary for 
the operation of the kinematic axis, or the 
braking systems related can be sized rigorously, 
thus enabling to avoid critical situations, which 
can lead to damage of mechanical structure. 
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Funcţii de control dinamic pentru o axă de transmisie cu şurub cu bile 
 

În lucrare, se vor stabili momentele motoare pentru o axă de translaţie orizontală cu șurub cu bile a unui robot. Se 
prezintă un studiu dinamic detaliat al mecanismului de transmisie și implicit o determinare riguroasă a funcțiilor de 
control dinamic, de-a lungul lanțului cinematic al sistemului mecanic robotizat. Studiul are un aspect fundamental, cu 
implicații profunde în designul optim al unui robot în ceea ce privește dimensionarea, consumul de energie și precizia. 
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