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Abstract: This paper presents an optimization algorithm called KGCS suitable to be used for different 

engineering problems. The efficiency of the algorithm is given by the aggregation between the 

particularities of the Cuckoo Search algorithm and of the Knowledge Gradient policy. The paper also 

presents the testing of the KGCS algorithm on benchmark engineering problems, such as the optimal 

design of welded beams, speed reducers or four bar trusses. The results of the tests are compared to the 

ones reported in the literature for other evolutionary algorithms to prove the high performance of the 

KGCS algorithm.   
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bar truss. 
 

1. INTRODUCTION   
  

Optimal design problems are widely spread 
in all engineering fields due to the fact that it is 
desired to find the best solution with respect to 
certain criteria and under given circumstances.  

A lot of effort has been put into studying 
optimization methods for engineering design, 
see for example [1]. Moreover, a considerable 
amount of research has been dedicated to 
developing fast and reliable optimization 
algorithms that find the optimum solutions of 
mathematical benchmark functions as well as 
the optimal design solutions of benchmark 
engineering design problems with more than 
two variables and several constraints [2]. If the 
algorithms have a good performance on the 
benchmark functions then they are suitable to 
be used for real world applications. 

  Several published scientific papers present 
the tests conducted on one or more engineering 
design benchmark problems. For example, in 
[3] the authors present the design optimization 
of a pressure vessel using a metaheuristic called 
Ant Colony Optimization. The purpose was 
cost reduction by minimizing weight and 
respecting constraints that ensure adequate 
strength and stiffness. Another example is the 

optimal design of a speed reducer [4]. The 
problem is formulated as a minimization 
problem of the total weight while satisfying 
constraints such as the limits on the bending 
stress of the gear teeth, surface stress or 
transverse deflections of shafts. Other papers 
present algorithms that have been tested on 
more design optimization problems such as a 
Particle Swarm Optimization algorithm [5] or a 
microgenetic algorithm [6]. 

 
2. ALGORITHM DESCRIPTION 
  
2.1 Cuckoo Search algorithm  

The class of evolutionary algorithms which 
were developed based on the evolution and/or 
functioning of different biological systems have 
proven to be very efficient for solving 
optimization problems. One of these 
evolutionary algorithms is Cuckoo Search 
algorithm which is inspired by specific egg 
laying and breeding of cuckoos.  

This algorithm has been tested and used for 
engineering design, a domain of great industrial 
interest [7].  

For the optimizations conducted on the 
benchmark engineering problems presented in 
this paper, the Lèvy flights version of the 
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algorithm was implemented. According to this 
version the optimization algorithm generates a 
random initial population. One egg is laid in a 
host bird nest by each cuckoo from the 
population. Those nests in which the eggs are 
laid are chosen using Lèvy flights from the 
current nest of each cuckoo. Obviously, the 
search space limits are respected. An example 
of a 2D Lèvy flight is presented in Fig. 1. As it 
can be seen the flight shows a cluster of small 
steps around the origin point which are 
separated by extreme jumps, proving that is 
does a good local search and it also offers the 
possibility to search other areas. The evaluation 
of each new cuckoo chick that hatches from the 
laid eggs and as well as the value of the best 
cuckoo is updated. The reality concerning egg 
laying and breeding of cuckoos shows there is a 
possibility that the eggs are discovered by the 
host bird. Therefore, in the program a constant 
is set and it represents the probability to 
discover the cuckoo eggs. According to it some 
of the cuckoo chicks are killed and new eggs 
are laid. This ensures that the cuckoo 
population does not migrate too soon towards a 
certain area that seems to be the best and, 
therefore, reduces the chances of finding a local 
optimum in optimization problems. After all 
these steps are performed, a new cuckoo 
population is formed by combining the best 
cuckoos of the cuckoo chicks and the cuckoo 
parents.  

 
Fig. 1. A 2D Lèvy flight of 500 steps with (0,0) as 

starting point [8]. 
 

The stop condition of the generational 
process can be formulated in different ways, for 
example it can be given by a certain number of 
generations or objective function evaluations. 
The implemented algorithm was tested on 
mathematical benchmark functions [8]. 

 
2.2 Knowledge Gradient Cuckoo Search 

(KGCS) algorithm  
Usually optimization problems depending on 

their complexity can require thousands or 
hundreds of thousands of objective function 
calls, fact that increases the computational cost. 
Hence, the purpose is to develop and use 
algorithms precise, robust, and, of course, 
extremely e cient. In order to fulfill this 
purpose, the already presented version of 
Cuckoo Search algorithm was improved based 
on the idea that with greater knowledge, less 
exploration is necessary. In fact, the growth in 
knowledge of the cuckoo population during 
migration was innovatively assessed using the 
Knowledge Gradient policy presented in more 
detail in [8, 9]. 

The enhanced algorithm has two phases. The 
first one is an exploration phase in which the 
algorithm uses three cuckoo populations. They 
are initially randomly generated and then they 
are let to explore the search space and try 
identifying the optimal solution independently. 
After evaluation, the best cuckoo is updated for 
each of the three populations. During this phase 
at the end of each generation, an archive with 
the best cuckoos is updated for each population. 
This phase lasts for several generations 
(approximately 5%-10% from the maximum 
number of generations).  

During the second phase, the level of 
exploration is reduced, while the exploitation is 
increased. This is achieved by computing the 
knowledge gradient for each population based 
on its own archive. Then the search for the 
optimal solution is continued only by the 
population which ensures the largest expected 
improvement according to Knowledge Gradient 
policy. This improved algorithm was 
implemented in Matlab and it was tested on 
mathematical benchmark functions. The results 
showed and average percentage decrease of the 
number of required objective function 
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evaluations of 6.13 % when compared to the 
number of required objective function 
evaluations when using standard Cuckoo  

Search algorithm [8, 9]. An example of the 
population migration corresponding to the two 
phases is presented in Fig. 2 for the test 
conducted on Rosenbrock’s 2D function. 

Fig. 2. a) The beginning of the first phase; b) The end 
of the first phase; c) The beginning of the second phase; 

d) The end of the second phase [8] 
 

3. OPTIMIZATION PROBLEMS 
  
3.1 Optimization problem formulation  

Considering the exponential increase of 
information and technology nowadays, finding 
the optimal alternative as fast as possible is a 
must even in the case of simple decisions. This 
has caused an increase in the use of 
implemented algorithms that are capable to 
solve optimization problems e ciently.  

Mathematically, a mono-objective 
optimization problem can be formulated as 
follows, without the loss of generality: 

min ( )
x

f x                                   (1) 

subjected to: 

( ) 0,  i=1,m
i

g x ≥                          (2) 

where x  is the decision vector, f  is the 

objective function and 
i

g  are the constraint 

functions. 
The proposed algorithm was developed for 

unconstrained optimization problems. 
Therefore, a special approach must be defined 
to handle the constraints. Several constraint-

handling methods exist in the literature [10]. 
The one chosen for the testing on the algorithm 
on engineering problems consists in adding a 
penalty term to the value of the objective 
function. This term is a sum of all the absolute 
values of the constraint functions violations 
multiplied by a large penalty factor. 
 
3.2 Welded beam optimal design  

Three engineering design problems were 
selected to test the efficiency and applicability 
of the enhanced KGCS algorithm for mono-
objective design optimization. The first 
benchmark engineering design problem 
consists in designing a welded beam (Fig. 3) 
with minimum cost (see [11]), but respecting 
the constraints on shear stress, bending stress 
and buckling load.  

 
 

Fig. 3. Welded beam design problem 

The problem can be formulated as follows: 

( ) ( )
1 2 3 4
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x x x x
c c x x c x x L x+ ⋅ ⋅ + ⋅ ⋅ ⋅ +  (3) 

subjected to 

( )

( )

( )

1 1 2 3 4 max 1 2 3 4

2 1 2 3 4 max 1 2 3 4

3 1 2 3 4 4 1

2
4 1 2 3 4 1 1 2 3 4 2

5 1 2 3 4 1

6

( , , , ) 0, , ,

( , , , ) , , , 0

( , , , ) 0                                   (4) 

( , , , ) 5 0

( , , , ) 0.125 0

g x x x x x x x x

g x x x x x x x x

g x x x x x x

g x x x x c x c x x L x

g x x x x x

g

τ τ

σ σ

= ≥−

= − ≥

= − ≥

= − ⋅ − ⋅ ⋅ ⋅ + ≥

= − ≥

( )

( )

1 2 3 4 max 1 2 3 4

7 1 2 3 4 1 2 3 4

( , , , ) , , , 0

( , , , ) , , , 0

x x x x x x x x

g x x x x Pc x x x x P

δ δ= − ≥

= − ≥

 



624 
 

 

where L  is the length of the suspended part 
of the beam, 1c  is the cost per unit of weld 

material, 3c  is the labor cost per unit of weld 

material, 2c  is the cost per volume unit of the 

beam,  τ  is the weld stress, σ  is the beam 
bending stress, δ  is the deflection when the 
load P  is applied at the free end of the beam, 
Pc  is the beam bucking load and 1 2, 0.1,x x ≥  

3 410, 2.0x x≤ ≤ . 

 
Fig. 4. Evolution of objective function value vs. number 

of iterations for the welded beam optimal design 
benchmark problem 

Using the values given in the literature for 
costs, applied load and maximum values of 

,  ,  τ σ δ , the best solution is:  

1 20.205729631744914, 3.347214236041922,x x= =

3 49.036623910679769, 0.205729639976771.x x= = It 

was found after approximately 21100 objective 
function evaluations (see Fig. 4) which is less 
than the ones reported in the open literature 
[12]. 
 

3.3 Speed reducer optimal design 

The speed reducer is used in many other 
types of engineering applications. Its optimal 
design is a more challenging benchmark 
engineering problem, due to the fact that it has 
seven design variables. These variables are: the 
gear face width ( 1x ), the teeth module ( 2x ), the 

number of pinion teeth ( 3x ), the length of the 

first shaft between bearings ( 4x ), the length of 

the second shaft between bearings ( 5x ), the 

diameter of the first shaft ( 6x ) and the diameter 

of the second shaft ( 7x ). A schematic view of 

the speed reducer is presented in Fig. 5 together 
with the seven design variables.  

 
Fig. 5. A schematic view of the speed reducer  

This second engineering design benchmark 
problem consists in minimizing the weight of 
the speed reducer while respecting the 
constraints on bending stress of the gear teeth, 
surface stress, transverse deflections of the 
shafts and stresses in the shaft. The problem is 
formulated as follows: 

( )

( ) ( )
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1 2 7

2 2
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2 2
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where x  is the vector of the seven design 
variables and 1 2.6 3.6,  x≤ ≤ 2 0.7 0.8,x≤ ≤  

317  28,  x≤ ≤ 47.3 8.3,  x≤ ≤ 57.8 8.3,x≤ ≤

2.9 ≤ 6 3.9,  x ≤ 75.0 5.5.x≤ ≤  It has to 

mentioned here variables are real, except 3x  

which is integer. 

 
Fig. 6. Evolution of objective function value vs. number 

of iterations for the speed reducer optimal design 
benchmark problem 

 

Regardless of the fact that this problem has 
almost twice as many design variables than the 
previous one, the best solution was found after 
less than 20000 objective function evaluations 
(see Fig. 6) which is less than the ones reported 
in the open literature [12]. 
 
3.4 Four bar truss optimal design 

The third design engineering benchmark 
problem is the one of a four bar truss. The 
purpose is to determine design with minimum 
weight of the four bar truss presented in Fig. 7. 

The following assumptions were made: 
members 1 through 3 have the same length l  
(and the same area) and member 4 has the 

length 3l  (and different area). The constraints 
concern the stresses in the members and on the 
vertical displacement at the right end of the 
truss.  

According to [10], the problem can be 
formulated as follows: 

                       
1 2

1 2
,

min 3x 3
x x

x+                        (7) 

subjected  to 

                          

1
1 2

2 1

3 2

18 6 3
( ) 3 0

( ) 5.73 0              (8)

( ) 7.17 0

g x
x x

g x x

g x x

= − − ≥

= − ≥

= − ≥

 

 
Fig. 7. Four bar statically determinate truss  

 
Fig. 8. Evolution of objective function value vs. number 

of iterations for the four bar truss optimal design 
benchmark problem 

 

The simplicity of the problem and the 
modest number of variables is reflected in the 
small number of objective function evaluations 
(see Fig. 8) required to find the optimal 
solution. 
4. CONCLUSIONS  
 

The standard Cuckoo search algorithm was 
enhanced by implementing the Knowledge 
Gradient policy in Matlab and innovatively use 
it to evaluate and predict the knowledge of the 
cuckoo populations. The obtained KGCS 
algorithm was presented in this paper together 
with the proof that it performed better when 
tested on mathematical benchmark functions. 
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The algorithm was also tested on three 
engineering design benchmark problems. The 
results of the performed optimizations showed 
that KGCS is a fast and reliable optimization 
algorithm suitable to be used for solving 
engineering design problems. 
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ALGORITMUL ÎMBUNĂTĂȚIT KGCS PENTRU PROIECTARE ÎN INGINERIE  

 
Această lucrare prezintă un algoritm de optimizare numit KGCS potrivit pentru a fi folosit la diferite probleme de 

inginerie. Eficiența acestui algoritm este data de îmbinarea dintre particularitățile algoritmului Cuckoo Search (CS) și 
ale metodei Knowledge Gradient (KG). Lucrarea prezintă deasemenea testarea agoritmului KGCS pe o serie de 
probleme de test din inginerie, cum ar fi proiectarea optimală a grinzilor sudate, a reductoarelor de viteză sau a grinzilor 
cu zăbrele. Rezultatele testelor sunt comparate cu cele raportate în literatură pentru alți algoritmi evolutivi cu scopul de 
a dovedi performanța ridicată a algoritmului KGCS. 
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