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Abstract: A variable compression ratio mechanism is presented and the constrained relations between
different parameters are established. The study is performed in two ways: by geometrical and multibody
approaches. Based on the formulae deduced in this study, the authors determine the extreme positions of
the piston and the compression ratio for certain geometric parameters. The variations of extreme
positions and compression ratio depending on the dimensions’ variations of the elements are presented in
graphical mode and the conclusions are highlighted. A special attention is paid to the tiller’s curve of a

specific point.
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1. INTRODUCTION

Freudenstein and Maki [1] synthesize the
constructive solutions of the mechanism of an
engine with variable compression ratio with six
elements and seven joints, and with eight
elements and ten joints. Numerous patens were
brevetted in this field [2]. For a spark engine
the compression ratio is limited by the materials
used in its construction and the phenomenon of
knocking. The maximum value of the
compression ratio is 13:1, usually being limited
to 10:1. The prevention of knocking is made
with the aid of the swirl phenomenon that
creates a circular motion of the fuel in the
combustion chamber in order to homogenize it.
The usual methods for the obtaining of the
variable compression ratio are:

— articulated engine’s block. Such a method
was used by Hara et al. [3], Clenci [4]
obtaining a variation of the compression ratio
from 8.5:1 to 12.5:1. Another solution is given
by SAAB company [5], varying the
compression ratio from 8:1 to 14:1;

— modification of the volume of the
combustion  chamber by adding a
supplementary volume. The solution was

adopted by Ford [6] using a small piston acted
by a cam;

— modification of the piston’s geometry used
by Daimler-Benz and developed by University
of Michigan [7];

— tiller eccentrically assembled by inserting
an eccentric between the tiller and the
crankshaft. Another construction is based on
the use of a worm gear, the compression ratio
varying between 8.5:1 and 14:1 [8];

— eccentric crankshaft presented by FEV in
2007 and obtaining a compression ratio
between 8:1 and 16:1 [9];

— a combination of the crank-shaft and gear
mechanisms, used by PSA Group and leading
the compression ratio between 6:1 and 15:1
[10];

— additional different kinematic joints of the
crank-shaft mechanism. This solution is used
by Nissan for compression ratios between 8:1
and 14:1 [11].

Some aspects concerning the transitory
vibration for a variable compression ratio
mechanism was studied by the authors in [12].

This paper determines the influences of
different geometric parameters.
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Fig. 1. The mechanism.

2. THE MECHANISM

The mechanism is presented in Fig. 1. It
contains the shaft OC, intermediate triangular
element ABC, crank BD, piston situated at the
point D, and the control element CE. The
crankshaft rotates uniformly with an angular
velocity ®. The control element has a
determined motion which is considered to be
known, Y, =Y,(t). The system has five
elements and, that is, it has maximum 15
possible degrees of freedom. The position of
the mechanism is described by the positions of
the centers of weight of the five elements, X ¢

Yc,., and the rotational angles of them ¢,,

i = 1,_5 The displacement between the Y -axis
and the direction of motion of the piston is
equal to e; usually e has small values and in
the most cases e = 0. The coordinate X,,

which is a constant of the mechanism is
denoted by d .

3. GEOMETRIC APPROACH
Further on, we make the
notations:
— OXY - the fixed reference frame

following

- C,, i=15 — centers of mass of the
elements, assumed to be homogeneous;

— C,x,y, — mobile reference system attached
to the element OA and having the x, -axis
along the line OA and orientated from point C,
to point A;

- Cux,y, reference

mobile system

attached to the triangular element ABC with
the x,-axis situated along the line C,C and

orientated from point C, to point C;

— C,x;y, — mobile reference frame attached
to the element BD and having the x;-axis
along the line BD and orientated from point
C, to point D;

- C,x,y, — mobile reference frame attached
to the element CE, with the x,-axis along the
line CE and orientated from point C, to point
E;

— Csx,ys —mobile reference system attached

to the piston (element 5) and having the axes
parallel to the axes of the fixed reference
system,;

- @,, i =1,5 — the rotational angles of the

mobile reference systems. One may observe
that always

@5 =0; (D
- [Ai], i = 1,_5 — the rotation matrices,
cos ¢, — sin @,
[A]= { . } ; 2)
sin @, cos @,

- X,, Y, — the coordinates of a generic
point P relative to the fixed system of
coordinates;

- xg), yfrf) — the coordinates of the generic

point P relative to the mobile system of

coordinates Cx;y,, i = 1,5;

1

— m,, m,, m,_— the lengths of the medians

of the triangle ABC ;



— 0 —the angle BC,C.
The coordinates of the point A are

X, =0Acosg,, Y, =OAsing@,. 3)
The coordinates of the point E are
X,=d,Y, =h, @

where the dimension % are considered to be
known at each moment of time.

Point C 1is obtained as the intersection
between the circle with center at the point A
and radius AC , and the circle with the center at
the point E and radius CE, that is, the
coordinates of the point C are the solutions of
the system

(X -x,)+{r-v) =(Acy,
(X -x, Y+ -v,) =(CE).
It results
—e, +.e, +dpe

&)

Xc= Yo =aXc +b,  (6)
€
where
. (cA) —(ceY
Xy ™
XXV Y
2 b
a=-Et ®)
YE - YA
c
b = ,
Y, -7, ©)
e, =1+a?, (10)
e,=ab—-a¥, -X,, 11
d =(CAY - x2-(b-Y,). (12)
Similarly, point B is the intersection

between the circle with the center at the point
A and the radius equal to AB, and the circle
with the center at the point C and the radius
equal to BC, that is, the coordinates of the
point B are the solution of the system

(X - XA)2 + (Y _YA)2 = (AB)Z’

13

(X-x.P+0-v)=@y.
We obtain

x,=—etNarda oy L 4

€
in which the parameters e¢,, e,, a, b, and ¢
are given by
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(AB)® - (BC)’

CcC =

2 2 2 2 2 (15)
PR S b (b
2 9
X.-X
a=-——2" (16)
c ™ 1a
C
b= :
v -v, (17)
e, =1+a’, (18)
e,=ab—-aY¥, - X,, (19)
d =(AB) - X2 —(b-7Y,). (20)

Point D is situated at the intersection of the
circle with the center at the point B and radius
BD, and the vertical line of equation X, =e.
We obtain the values

X,=e,

YD _YB +\/(BD)2 - (XD - XB)2 .

21

4. MULTIBODY APPROACH

Denoting by {RP} and {r,(j)} the column
matrices

R, }=[x, 1,]. (22)

= T (23)

where P is a generic point, one may write the
relation

{R,} =R j+[AJr}. (24)
First of all, we have to determine the
coordinates of the points A, B, and C relative
to the mobile reference system C,x,y, .
We successively write

m, = \/ZI(CA)Z + (1;\3)2]_ (BCY , (25)

= V2AB) + sl

- J2lBey + (SA)Z_ - (aB) @
0

2m, ? 2m, 2_ 2
( 3 j +( 3 j B | g

&5 )

= arccos
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0,
m 2 2 ,
a —(CA
( j +( 3 J (ca) (29)
= arccos ( j[ j R
A = Yy =="tsing,, (30)
xQ) = sin 0 (31)
2
xh =Ty =0 (32)

The following constraint functions may be

written:

— the point A belongs to the elements 1 and

2; hence

Xal | Xq N cos @, — sin @,
Y, B Y sin@, cos@,

X, | Xe, N cos @, —sin @,
Y, | Ye, sin@, cos@,

where

OA
X = 2, o

=0.

[
[

(1)
(U] (33)
(2)

A
. (34)
yf)}

(35)

Equating the expressions (33) and (34), we
obtain the first two constraint functions;
— point B belongs to the elements 2 and 3;

we have

Xp| Xe, N cos @,
YB - YCZ Sin (p2

Xl | Xe N cos @, — sin @,
Y, | Y, sin@, cos @,

in which

BD
)= =5 )

—sin @,

cos @,

=0.

L
}{m

(2)

] (36)
Vi

(3)

ym] (37)

(38)

From the equations (36) and (37) one deduces

another two constraint functions;

— point C belongs to the elements 2 and 4
and therefore one may write

T
Y, | | Y,
HiE
Y. | | Y,

where

e
sin @,

_CE

cos @,

} N {c?s ¢, —sin@,
sin @,

—sin @,

cos @,

|
I

(2)

Xc
, 39
y(c”} 49

(4)

Xc
» (40)

o
(41)

Equating now the relations (39) and (40), we
obtain another two constraint functions.

— point D belongs to the elements 3 and 5
and, consequently, one gets

{XD} _ _XC3} . {cos @, — sin (pﬂ{ )} @)
Y, i Y, SIn @;  COS P yD

[ X X 1)
S R S R (43)
RE Yes Yb
where we kept into account that
100
[As]=[L]=|0 10|, (44)
001
while
BD
x === ) =0, (45)
=0, yP=0. (46)

Equations (42) and (43) lead to another two
constraint functions;
— the coordinate X, is known,
X, =d,
and therefore we may write

X X — x4
)L e e L] o
¢ Y, sing, cos@, |y

wherefrom it results the relation
=d
E

47)

= X, + x¥ cos @, — yW sin o, 50)
CE
=X, + - cos @,
and the corresponding constraints function;
— the coordinate X, is also known,
X, =e; (51

similarly, we have

X X — )
{ D:| | ey {COS ¢; —sin (pa}[ } (52)
Y, ch Sin @; COos P, )’D
wherefrom
X, =e

=X, +x§) cos @, — y¥) sin @,

(53)
= X, +%cos o0,

and we get other constraints function;
—the coordinates X and Y, are
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OA OA .
X, = TCOS([)I, Y. = 7s1n(pl, (54)

resulting another two constraints function;

— the rotation angle of the element 5 is
always equal to zero, obtaining the constraints
function given by equation (1).

The previous discussion shows that there
exist at least 13 constraints functions. Taking
into account this statement, it results that the
mechanism has no more than two degrees of
freedom.

The last constraints function is obtained
from the condition

Y. =h, (55)
which leads to (see equation (48))
Y. =h

=Y, + x sin @, + yi¥ cos @, 56)

CE .
=Y, +7s1n(p4.

Due to our assumption that the coordinate
Y, is always known, it results that one knows
the function

h = hlr). (57)

If the relation (57) is not known, then the
mechanism has two degrees of freedom, the
expression (56) not leading to a constraints
function.

We will consider that this degree of freedom
is the rotation angle ¢,.

5. POSSIBILITIES TO DETERMINE THE
EXTREME POSITIONS OF THE PISTON
AND THE COMPRESSION RATIO

There exist the following ways in which one
may determine the extreme positions of the
piston and, consequently, the compression
ratio:

— the formulae developed in the paragraph 3
may be written as

Y, =Y,(9,). (58)
The extreme positions are obtained from the
equation
dy, _
de,
The equation (59) is a very complicated one

and may be solved only by numerical methods.
Moreover, this equation has at least two real

(59)
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roots in the variable @,, and the great challenge
is the separation of these roots. In addition, the
fast numerical methods in solving the equation
may not be directly applied because of
convergence conditions required by these
methods (e.g. Newton's method [13]). For these
reasons, combined numerical methods must be
applied;

— the second approach uses the constraints
functions presented in paragraph 4. Let us
denote by {q} the column matrix formed with

XCl , YC1 s e XC5 , YC5 , @, ..., @5. Each
constraints function is an equation in the form
fifal)=0,i=114. (60)
Considering the Lagrange function
14
Flfahheen ) = Y, + Y0 £ (a)
i=1 (61)

BD -
=Y, + ES sin @, + z IWACHE
i=1

the solution is obtained from the system

OF OF OF
-0, 0, 2 -0,i=15,
X, o, 9, " (62)
OF
2 r(a)=0, j=114,
7, f,({a}) J (63)

that is, a nonlinear system of 29 equations with
29 unknowns, which can be generally solved by
numerical methods. The same discussion about
the convergence on the numerical methods
holds true in this situation too;

— by direct use of numerical methods.
Recalling the formulae developed in paragraph
3 or 4, and using a small incremental step AQ,

for the rotation angle @,, one may construct a
sequence of values Y, = YD((pl). It is now an
easy task to determine the maximum and the
minimum values in this sequence.

The above discussion proves that the
minimum and maximum values for the
coordinate Y, can be determined only by
approximates, and one has to set the required
precision.

6. NUMERICAL STUDY

The following realistic values are selected
for our numerical study: (AB)O =0.043m,
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The rest of the figures may be similarly
judged. One may observe that the length of the
control lever CE has no influence on the
extreme positions of the piston and the
compression ratio, the length CE 1is set by
constructive criteria.

Figure 26 presents the geometric locus of the
point B when the control moves on vertical
direction. In this situation, the variation of Y, is

+0.02m. This zone influences the
constructive dimensions of the engine.
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Fig. 26. The geometric locus of the tiller's curve of the
point B when Y}, is varied

7. CONCLUSION

The variations of the extreme positions of
piston and of compression ratio are important in
the synthesis of the mechanism.

The tiller curves for different characteristic
points and dimensions of the elements give
information about the constructive dimensions
of the mechanism, relative positions of the
elements etc.
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STUDIUL INFLUENTEI PARAMETRILOR GEOMETRICI ASUPRA DEPLASARII PISTONULUI SI A
RAPORTULUI DE COMPRIMARE PENTRU UN MECANISM CU COMPRIMARE VARIABILA

Abstract: Se prezintd un mecanism cu raport de comprimare variabil §i se stabilesc relatiile dintre diferifi
parametri. Studiul este realizat in doud moduri: prin abordare geometrica si abordare multicorp. Pe
baza formulelor deduse in cadrul acestui studiu, autorii determind pozitiile extreme ale pistonului,
precum si raportul de comprimare pentru anumifi parametri geometrici. Variatiile pozitiilor extreme §i
ale raportului de comprimare in functie de variatiile dimensiunilor elementelor sunt prezentate in mod
grafic §i de aici se deduc concluziile. O atentie deosebita este datd curbei de biela pentru un punct

specific al mecanismului.
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