
649 

 

 

 

 

     TECHNICAL UNIVERSITY OF CLUJ-NAPOCA 
 

      ACTA TECHNICA NAPOCENSIS 
 

 Series: Applied Mathematics, Mechanics, and Engineering 

                      Vol. 60, Issue IV, November, 2017 

 

 

 

 

 

  

 

 

 

STUDY OF THE INFLUENCE OF GEOMETRIC PARAMETERS ON THE 

DISPLACEMENT OF PISTON AND COMPRESSION RATIO FOR A 

VARIABLE COMPRESSION RATIO MECHANISM 
 

Bogdan MĂNESCU, Ionuț DRAGOMIR, Nicolae-Doru STĂNESCU, Nicolae PANDREA 

 
Abstract: A variable compression ratio mechanism is presented and the constrained relations between 

different parameters are established. The study is performed in two ways: by geometrical and multibody 

approaches. Based on the formulae deduced in this study, the authors determine the extreme positions of 

the piston and the compression ratio for certain geometric parameters. The variations of extreme 

positions and compression ratio depending on the dimensions’ variations of the elements are presented in 

graphical mode and the conclusions are highlighted. A special attention is paid to the tiller’s curve of a 

specific point. 

Key words: variable compression ratio mechanism, extreme positions, compression ratio, lever’s curve, 

multibody. 

 

1. INTRODUCTION  
 

Freudenstein and Maki [1] synthesize the 

constructive solutions of the mechanism of an 

engine with variable compression ratio with six 

elements and seven joints, and with eight 

elements and ten joints. Numerous patens were 

brevetted in this field [2]. For a spark engine 

the compression ratio is limited by the materials 

used in its construction and the phenomenon of 

knocking. The maximum value of the 

compression ratio is 13:1, usually being limited 

to 10:1. The prevention of knocking is made 

with the aid of the swirl phenomenon that 

creates a circular motion of the fuel in the 

combustion chamber in order to homogenize it. 

The usual methods for the obtaining of the 

variable compression ratio are: 

– articulated engine’s block. Such a method 

was used by Hara et al. [3], Clenci [4] 

obtaining a variation of the compression ratio 

from 8.5:1 to 12.5:1. Another solution is given 

by SAAB company [5], varying the 

compression ratio from 8:1 to 14:1; 

– modification of the volume of the 

combustion chamber by adding a 

supplementary volume. The solution was 

adopted by Ford [6] using a small piston acted 

by a cam; 

– modification of the piston’s geometry used 

by Daimler-Benz and developed by University 

of Michigan [7]; 

– tiller eccentrically assembled by inserting 

an eccentric between the tiller and the 

crankshaft. Another construction is based on 

the use of a worm gear, the compression ratio 

varying between 8.5:1 and 14:1 [8]; 

– eccentric crankshaft presented by FEV in 

2007 and obtaining a compression ratio 

between 8:1 and 16:1 [9]; 

– a combination of the crank-shaft and gear 

mechanisms, used by PSA Group and leading 

the compression ratio between 6:1 and 15:1 

[10]; 

– additional different kinematic joints of the 

crank-shaft mechanism. This solution is used 

by Nissan for compression ratios between 8:1 

and 14:1 [11]. 

Some aspects concerning the transitory 

vibration for a variable compression ratio 

mechanism was studied by the authors in [12]. 

This paper determines the influences of 

different geometric parameters. 
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Fig. 1. The mechanism. 

 

2. THE MECHANISM 
 

The mechanism is presented in Fig. 1. It 

contains the shaft OC , intermediate triangular 

element ABC , crank BD , piston situated at the 

point D , and the control element CE . The 

crankshaft rotates uniformly with an angular 

velocity ω . The control element has a 

determined motion which is considered to be 

known, ( )tYY EE = . The system has five 

elements and, that is, it has maximum 15 

possible degrees of freedom. The position of 

the mechanism is described by the positions of 

the centers of weight of the five elements, 
iCX , 

iCY , and the rotational angles of them iϕ , 

5 ,1=i . The displacement between the Y -axis 

and the direction of motion of the piston is 

equal to e ; usually e  has small values and in 

the most cases 0=e . The coordinate EX , 

which is a constant of the mechanism is 

denoted by d .  

 

3. GEOMETRIC APPROACH 

 

Further on, we make the following 

notations: 

– OXY  – the fixed reference frame 

– iC , 5 ,1=i  – centers of mass of the 

elements, assumed to be homogeneous; 

– 111 yxC  – mobile reference system attached 

to the element OA  and having the 1x -axis 

along the line OA  and orientated from point 1C  

to point A ; 

– 222 yxC  – mobile reference system 

attached to the triangular element ABC  with 

the 2x -axis situated along the line CC2  and 

orientated from point 2C  to point C ; 

– 333 yxC  – mobile reference frame attached 

to the element BD  and having the 3x -axis 

along the line BD  and orientated from point 

3C  to point D ; 

– 444 yxC  – mobile reference frame attached 

to the element CE , with the 4x -axis along the 

line CE  and orientated from point 4C  to point 

E ; 

– 555 yxC  – mobile reference system attached 

to the piston (element 5) and having the axes 

parallel to the axes of the fixed reference 

system; 

– iϕ , 5 ,1=i  – the rotational angles of the 

mobile reference systems. One may observe 

that always 

05 =ϕ ; (1)

– [ ]iA , 5 ,1=i  – the rotation matrices, 

[ ] 








ϕϕ

ϕ−ϕ
=

ii

ii

i
cossin

sincos
A ; (2)

– PX , PY  – the coordinates of a generic 

point P  relative to the fixed system of 

coordinates; 

– ( )i
Px , ( )i

Py  – the coordinates of the generic 

point P  relative to the mobile system of 

coordinates iii yxC , 5 ,1=i ; 

– am , bm , cm  – the lengths of the medians 

of the triangle ABC ; 
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– θ  – the angle CBC2 . 

The coordinates of the point A  are 

1cos ϕ= OAX A , 1sin ϕ= OAYA . (3)

The coordinates of the point E  are 

dX E = , hYE = , (4)

where the dimension h  are considered to be 

known at each moment of time. 

Point C  is obtained as the intersection 

between the circle with center at the point A  

and radius AC , and the circle with the center at 

the point E  and radius CE , that is, the 

coordinates of the point C  are the solutions of 

the system 

( ) ( ) ( )222
ACYYXX AA =−+− , 

( ) ( ) ( )222
CEYYXX EE =−+− . 

(5)

It results 

1

1122

e

edee
X C

++−
= , baXY CC += , (6)

where 

( ) ( )

, 
2

2
2222

22

EAEA
YYXX

CECA
c

+−+−
+

−
=

 (7)

AE

AE

YY

XX
a

−

−
−= , (8)

AE YY

c
b

−
= , (9)

2
1 1 ae += , (10)

AA XaYabe −−=2 , (11)

( ) ( )222

1 AA YbXCAd −−−= . (12)

Similarly, point B  is the intersection 

between the circle with the center at the point 

A  and the radius equal to AB , and the circle 

with the center at the point C  and the radius 

equal to BC , that is, the coordinates of the 

point B  are the solution of the system 

( ) ( ) ( )222
ABYYXX AA =−+− , 

( ) ( ) ( )222
BCYYXX CC =−+− . 

(13)

We obtain 

1

1122

e

edee
X B

++−
= , baXY CB += , (14)

in which the parameters 1e , 2e , a , b , and c  

are given by 

( ) ( )

, 
2

2
2222

22

CACA YYXX

BCAB
c

+−+−
+

−
=

 (15)

AC

AC

YY

XX
a

−

−
−= , (16)

AC YY

c
b

−
= , (17)

2
1 1 ae += , (18)

AA XaYabe −−=2 , (19)

( ) ( )222

1 AA YbXABd −−−= . (20)

Point D  is situated at the intersection of the 

circle with the center at the point B  and radius 

BD , and the vertical line of equation eX D = . 

We obtain the values 

eX D = , 

( ) ( )22

BDBD XXBDYY −−+− . 
(21)

 

4. MULTIBODY APPROACH 

 

Denoting by { }PR  and ( ){ }i
Pr  the column 

matrices 

{ } [ ]T

PPP YX=R , (22)

( ){ } ( ) ( )[ ]Ti
P

i
P

i
P yx=r , (23)

where P  is a generic point, one may write the 

relation 

{ } { } [ ] ( ){ }i
PiCP i

rARR += . (24)

First of all, we have to determine the 

coordinates of the points A , B , and C  relative 

to the mobile reference system 222 yxC . 

We successively write 

( ) ( )[ ] ( )
2

2
222

BCABCA
ma

−+
= , (25)

( ) ( )[ ] ( )
2

2
222

CABCAB
mb

−+
= , (26)

( ) ( )[ ] ( )
2

2
222

ABCABC
mc

−+
= , (27)

( )
, 

3

2

3

2
2

3

2

3

2

arccos

2

22




































−







+









=

θ

bc

bc

mm

BC
mm

 (28)
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( )
, 

3

2

3

2
2

3

2

3

2

arccos

2

22

2




































−







+









=

ϕ

ca

ca

mm

CA
mm

 (29)

( )
2

2 cos
3

2
ϕ= a

A

m
x , ( )

2

2 sin
3

2
ϕ= a

A

m
y , (30)

( ) θ= cos
3

2
2 b

B

m
x , ( ) θ= sin

3

2
2 b

B

m
y , (31)

( )

3

22 c
C

m
x = , ( ) 02 =Cy . (32)

The following constraint functions may be 

written: 

– the point A  belongs to the elements 1 and 

2; hence 
( )

( )
















ϕϕ

ϕ−ϕ
+








=








1

1

11

11

cossin

sincos

1

1

A

A

C

C

A

A

y

x

Y

X

Y

X
, (33)

( )

( )
















ϕϕ

ϕ−ϕ
+








=








2

2

22

22

cossin

sincos

2

2

A

A

C

C

A

A

y

x

Y

X

Y

X
, (34)

where 

( )

2

1 OA
xA = , ( ) 02 =Ay . (35)

Equating the expressions (33) and (34), we 

obtain the first two constraint functions; 

– point B  belongs to the elements 2 and 3; 

we have 
( )

( )
















ϕϕ

ϕ−ϕ
+








=








2

2

22

22

cossin

sincos

2

2

B

B

C

C

B

B

y

x

Y

X

Y

X
, (36)

( )

( )
















ϕϕ

ϕ−ϕ
+








=








3

3

33

33

cossin

sincos

3

3

B

B

C

C

B

B

y

x

Y

X

Y

X
, (37)

in which 

( )

2
3

BD
xB −= , ( ) 03 =By . (38)

From the equations (36) and (37) one deduces 

another two constraint functions; 

– point C  belongs to the elements 2 and 4 

and therefore one may write 
( )

( )
















ϕϕ

ϕ−ϕ
+








=








2

2

22

22

cossin

sincos

2

2

C

C

C

C

C

C

y

x

Y

X

Y

X
, (39)

( )

( )
















ϕϕ

ϕ−ϕ
+








=








4

4

44

44

cossin

sincos

4

4

C

C

C

C

C

C

y

x

Y

X

Y

X
, (40)

where 

( )

2

4 CE
xC −= , ( ) 04 =Cy . (41)

Equating now the relations (39) and (40), we 

obtain another two constraint functions. 

– point D  belongs to the elements 3 and 5 

and, consequently, one gets 
( )

( )
















ϕϕ

ϕ−ϕ
+








=








3

3

33

33

cossin

sincos

3

3

D

D

C

C

D

D

y

x

Y

X

Y

X
, (42)

( )

( )







+








=








5

5

5

5

D

D

C

C

D

D

y

x

Y

X

Y

X
, (43)

where we kept into account that 

[ ] [ ]
















==

100

010

001

35 IA , (44)

while 

( )

2
4

BD
xD = , ( ) 04 =Dy , (45)

( ) 05 =Dx , ( ) 05 =Dy . (46)

Equations (42) and (43) lead to another two 

constraint functions; 

– the coordinate EX  is known, 

dX E = , (47)

and therefore we may write 
( )

( )
















ϕϕ

ϕ−ϕ
+








=








4

4

44

44

cossin

sincos

4

4

E

E

C

C

E

E

y

x

Y

X

Y

X
, (48)

wherefrom it results the relation 

( ) ( )

4

4
4

4
4

cos
2

sincos

4

4

ϕ+=

ϕ−ϕ+=

=

CE
X

yxX

dX

C

EEC

E

 
(50)

and the corresponding constraints function; 

– the coordinate DX  is also known, 

eX D = ; (51)

similarly, we have 
( )

( )
















ϕϕ

ϕ−ϕ
+








=








3

3

33

33

cossin

sincos

3

3

D

D

C

C

D

D

y

x

Y

X

Y

X
, (52)

wherefrom 

( ) ( )

3

3
3

3
3

cos
2

sincos

3

3

ϕ+=

ϕ−ϕ+=

=

BD
X

yxX

eX

C

DDC

D

 
(53)

and we get other constraints function; 

– the coordinates 
1CX  and 

1CY  are 
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1cos
21

ϕ=
OA

XC , 1sin
21

ϕ=
OA

YC , (54)

resulting another two constraints function; 

– the rotation angle of the element 5 is 

always equal to zero, obtaining the constraints 

function given by equation (1). 

The previous discussion shows that there 

exist at least 13 constraints functions. Taking 

into account this statement, it results that the 

mechanism has no more than two degrees of 

freedom. 

The last constraints function is obtained 

from the condition 

hYE = , (55)

which leads to (see equation (48)) 

( ) ( )

. sin
2

cossin

4

4
4

4
4

4

4

ϕ+=

ϕ+ϕ+=

=

CE
Y

yxY

hY

C

EEC

E

 
(56)

Due to our assumption that the coordinate 

EY  is always known, it results that one knows 

the function 

( )thh = . (57)

If the relation (57) is not known, then the 

mechanism has two degrees of freedom, the 

expression (56) not leading to a constraints 

function. 

We will consider that this degree of freedom 

is the rotation angle 1ϕ . 

 

5. POSSIBILITIES TO DETERMINE THE 

EXTREME POSITIONS OF THE PISTON 

AND THE COMPRESSION RATIO 

 

There exist the following ways in which one 

may determine the extreme positions of the 

piston and, consequently, the compression 

ratio: 

– the formulae developed in the paragraph 3 

may be written as 

( )1ϕ= DD YY . (58)

The extreme positions are obtained from the 

equation 

0
d

d

1

=
ϕ

DY
. (59)

The equation (59) is a very complicated one 

and may be solved only by numerical methods. 

Moreover, this equation has at least two real 

roots in the variable 1ϕ , and the great challenge 

is the separation of these roots. In addition, the 

fast numerical methods in solving the equation 

may not be directly applied because of 

convergence conditions required by these 

methods (e.g. Newton's method [13]). For these 

reasons, combined numerical methods must be 

applied; 

– the second approach uses the constraints 

functions presented in paragraph 4. Let us 

denote by { }q  the column matrix formed with 

1CX , 
1CY , ..., 

5CX , 
5CY , 1ϕ , ..., 5ϕ . Each 

constraints function is an equation in the form 

{ }( ) 0=qif , 14 ,1=i . (60)

Considering the Lagrange function 

{ }( ) { }( )

{ }( ) , sin
2

,...,,

14

1

3

14

1

141

3 ∑

∑

=

=

λ+ϕ+=

λ+=λλ

i

iiC

i

iiD

f
BD

Y

fYF

q

qq

 (61)

the solution is obtained from the system 

0=
∂

∂

iCX

F
, 0=

∂

∂

iCY

F
, 0=

ϕ∂

∂

i

F
, 5 ,1=i , (62)

{ }( ) 0==
λ∂

∂
qj

j

f
F

, 14 ,1=j , (63)

that is, a nonlinear system of 29 equations with 

29 unknowns, which can be generally solved by 

numerical methods. The same discussion about 

the convergence on the numerical methods 

holds true in this situation too; 

– by direct use of numerical methods. 

Recalling the formulae developed in paragraph 

3 or 4, and using a small incremental step 1ϕ∆  

for the rotation angle 1ϕ , one may construct a 

sequence of values ( )1ϕ= DD YY . It is now an 

easy task to determine the maximum and the 

minimum values in this sequence. 

The above discussion proves that the 

minimum and maximum values for the 

coordinate DY  can be determined only by 

approximates, and one has to set the required 

precision. 

 

6. NUMERICAL STUDY 

 

The following realistic values are selected 

for our numerical study: ( ) m 043.00 =AB , 



654 
 

 

( ) m 128.00 =BC , ( ) m 099.00 =CA , 

( ) m 103.00 =CE , ( ) m 030.00 =OA , 

( ) m 130.00 =BD , m 086.0=d , ( ) m 00 =e , 

( ) ( ) m 108.000
== hYE , the angular step 

0
1 1.0rad 

1800
=

π
=ϕ∆ , height of the 

combustion chamber m 0158,0=cch , 

( ) m 200.0
0

=DY . The index 0 stands for the 

standard values. 

Each parameter is varied with m 01.0±  

from the standard values. 

The diagrams obtained by numerical 

simulation are given in the next figures. 

The compression ratio was denoted by ci  in 

the corresponding figures. The standard value 

for the compression ratio is 10:1. 

-10 -8 -6 -4 -2 0 2 4 6 8 10
56

56.5

57

57.5

58

58.5

e [mm]

Y
D

m
in
 [

m
m

]

 
Fig. 2. The variation ( ) ( ) ( )eYY DD minmin

=  
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Fig. 3. The variation ( ) ( ) ( )eYY DD maxmax

=  

Analyzing the Figures 2-4, one may observe 

that minimum and maximum values for the 

parameter DY  decrease when the eccentricity e  

increases (negative values for e  signify that the 

piston is in the left part of the Y -axis). The 

variation are small (up to one or two 

millimeters). 
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Fig. 4. The variation ( )eii cc =  
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Fig. 5. The variation ( ) ( ) ( )ABYY DD minmin
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Fig. 6. The variation ( ) ( ) ( )ABYY DD maxmax
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Fig. 7. The variation ( )ABii cc =  
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Fig. 8. The variation ( ) ( ) ( )BCYY DD minmin

=  
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Fig. 9. The variation ( ) ( ) ( )BCYY DD maxmax

=  

118 120 122 124 126 128 130 132 134 136 138
5

6

7

8

9

10

11

12

13

BC [mm]

i c
 [

-]

 
Fig. 10. The variation ( )BCii cc =  

 

The same variation is characteristic to the 

compression ratio (it decreases when the 

eccentricity increases), the variation being 

again a small one. 

The influence of the length AB  (Figs. 5-7)is 

more dramatically. The variation of the same 

parameters are situated in larger limits. The 

compression ratio may reach values of 50:1, 

which is impossible. In fact, we may conclude 

that the variation of AB  assures a raw 

adjustment of the mechanism. 
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Fig. 11. The variation ( ) ( ) ( )CAYY DD minmin

=  
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Fig. 12. The variation ( ) ( ) ( )CAYY DD maxmax

=  
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Fig. 13. The variation ( )CAii cc =  
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Fig. 14. The variation ( ) ( ) ( )OAYY DD minmin

=  
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Fig. 15. The variation ( ) ( ) ( )OAYY DD maxmax

=  
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Fig. 16. The variation ( )Aii cc 0=  
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Fig. 17. The variation ( ) ( ) ( )CEYY DD minmin

=  
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Fig. 18. The variation ( ) ( ) ( )CEYY DD maxmax

=  
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Fig. 19. The variation ( )CEii cc =  
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Fig. 20. The variation ( ) ( ) ( )BDYY DD minmin

=  
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Fig. 21. The variation ( ) ( ) ( )BDYY DD maxmax

=  
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Fig. 22. The variation ( )BDii cc =  
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Fig. 23. The variation ( ) ( ) ( )dYY DD minmin

=  
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Fig. 24. The variation ( ) ( ) ( )dYY DD maxmax

=  
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Fig. 25. The variation ( )dii cc =  

 

The rest of the figures may be similarly 

judged. One may observe that the length of the 

control lever CE  has no influence on the 

extreme positions of the piston and the 

compression ratio, the length CE  is set by 

constructive criteria. 

Figure 26 presents the geometric locus of the 

point B  when the control moves on vertical 

direction. In this situation, the variation of EY  is 

m 02.0± . This zone influences the 

constructive dimensions of the engine. 

 
Fig. 26. The geometric locus of the tiller's curve of the 

point B  when EY  is varied 

 

7. CONCLUSION 

 

The variations of the extreme positions of 

piston and of compression ratio are important in 

the synthesis of the mechanism. 

The tiller curves for different characteristic 

points and dimensions of the elements give 

information about the constructive dimensions 

of the mechanism, relative positions of the 

elements etc. 
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STUDIUL INFLUENŢEI PARAMETRILOR GEOMETRICI ASUPRA DEPLASĂRII PISTONULUI ŞI A 

RAPORTULUI DE COMPRIMARE PENTRU UN MECANISM CU COMPRIMARE VARIABILĂ  
 

Abstract: Se prezintă un mecanism cu raport de comprimare variabil şi se stabilesc relaţiile dintre diferiţi 

parametri. Studiul este realizat în două moduri: prin abordare geometrică şi abordare multicorp. Pe 

baza formulelor deduse în cadrul acestui studiu, autorii determină poziţiile extreme ale pistonului, 

precum şi raportul de comprimare pentru anumiţi parametri geometrici. Variaţiile poziţiilor extreme şi 

ale raportului de comprimare în funcţie de variaţiile dimensiunilor elementelor sunt prezentate în mod 

grafic şi de aici se deduc concluziile. O atenţie deosebită este dată curbei de bielă pentru un punct 

specific al mecanismului. 
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