
7 

 

 

 

 

     TECHNICAL UNIVERSITY OF CLUJ-NAPOCA 
 

      ACTA TECHNICA NAPOCENSIS 
 

 Series: Applied Mathematics, Mechanics, and Engineering 
                  Vol. 61, Issue I, March, 2018 

 

 
 
 
  
 
 
 

 
CONSIDERATIONS ON THE SERIAL PC - Arduino UNO R3 

INTERACTION, IN JAVA, USING JDEVELOPER, FOR A 3R SERIAL 
ROBOT, BASED ON THE ARDULINK LIBRARY 

 
Tiberiu Alexandru ANTAL 

 

 
Abstract: The paper presents a serial communication method in the Java programming language, based 

on the Ardulink library, using JDeveloper IDE, to program the position of 3R serial manipulator 

servomotors using the ARDUINO / GENUINO UNO microcontroller. The Java and the C code 

implementations under the JDeveloper and the Adruino IDEs are given, for the serial, bidirectional 

communication, between the PC and the GENUINO UNO microcontroller. 

 

Key words: Ardulink, Arduino, Java, JDeveloper, Microcontroller, Serial. 

 
1. INTRODUCTION   

 

The paper aims to deal with the problem of 

serial transfer between a PC, running a Java 

application, and a Arduino UNO R3 

microcontroller[1] that controls the 

servomotors of a serial 3R robot (three rotations 

and one servo for the end effector servo). The 

serial robot is from a kit called “DIY Control 

Robot Arm kit for Arduino-Rollarm” and found 

at 

https://www.sunfounder.com/learn/category/DI

Y-Control-Robot-Arm-kit-for-Arduino-

Rollarm.html. The GENUINO UNO is a 

Harvard architecture with its memory [1] 

organized as a 32 KB (with 0.5 KB occupied by 

the bootloader) flash memory, 2 KB of SRAM 

and 1 KB of EEPROM. In the case of the von 

Neumann architectures, the program data and 

code are stored in the same internal memory. 

This takes two sequential fetches, one for the 

code, and one for the data, to do most 

operations. The von Neumann architecture 

machines are more flexible for general 

computing by owning a common memory used 

entirely for large programs or large data sets. In 

addition, because the compiled programs 

contain both the data and the code, the data 

does not require any special processing (no 

need to move it to run after compiling) in order 

to make the code run. The Harvard architecture 

has two memories one for the data and one for 

the code; this allows parallel access to data and 

code. Flash memory is used to store code and 

initial data. Programs stored here can be run but 

the initial data stored here can’t be changed by 

the running code. Flash memory is non-volatile, 

so the code stored there will persist when the 

system is powered off. The SRAM or Static 

Random Access Memory is the data memory, 

so it can be read and written by the running 

code in the Flash memory. It is used for: 

• Static Data - for all the global and static 

variables in the code. Values of the 

initialized variables in the Flash 

memory will be copied to the SRAM by 

the system when the code starts; 

• Heap – for dynamically allocated data 

items. The heap grows from the top of 

the static data area up as data items are 

allocated; 

• Stack - maintained by the LIFO policy - 

is used for local variables and for 

maintaining a record of interrupts and 

function calls. The stack grows from the 

top of memory down towards the heap.  



8 
 

 

 

EEPROM is another non-volatile memory that 

can be read or written by the running code. 

However, this can be done only as byte data 

type. 

 

2. SOME HARDWARE ASPECTS ON 
THE USB COMMUNICATION FOR 
THE ARDUINO UNO R3 (Mars 
Board) 

 

The robot arm kit is using the SunFounder 

Mars Board (https://www.sunfounder.com/ 

sunfounder-mars-board-compatible-for-

arduino-uno-r3.html) an Arduiono Uno 

compatible board using the ATmega328P as 

processor and the same Optiboot bootloader as 

Uno (as a result it is programmable with the 

Arduino IDE). The board has a better hardware 

design compared to the original Arduino Uno 

as it is using the more stable and reliable 

FTDI232R for USB-to-serial and Type-C USB 

Port (supports reversible plug orientation). The 

Mars Board is connected to the servos by using 

the Extension Board and it is powered by two 

18650 batteries. With the power switch on and 

plugged into the USB Port of the PC, the 

Arduino IDE will identify the Mars board as 

Arduino/Genuino Uno board a will 

communicate over the COMx serial port. 0.5 K 

of the Flash memory contains the bootloader. A 

bootloader is a program that runs in the 

microcontroller to be programmed. It receives 

the new program from the exterior via USB and 

writes that information to the microcontroller. 

The bootloader always runs at reset so it is the 

first program that runs on the microcontroller. 

This will communicate over USB with the 

Arduino IDE and if the IDE responds properly 

it will receive the data and code from the 

Arduino IDE and load it to the proper 

memories of the microcontroller in order to 

make it work. The USB port is used to program 

the microcontroller with the help of the 

Arduino IDE as well as to interact with the Java 

application running on the PC in order to 

exchange data with the microcontroller. 

Asynchronous communication over the USB 

port is trying to avoid transmitting a 

synchronization clock between the transmitter 

and the receiver. Each byte of data is 

transmitted in a packet or frame of bits. Frames 

are created by appending synchronization and 

parity bits to data. The frame begins with 1 start 

bit, continues with 5-9 data bits, followed by 0-

1 party bits and 1-2 stop bits. The sender and 

the receiver clock frequency must be the same  

that is they must use the same fixed bit rate 

(clock periods per second) or bps (bits per 

second) so that communication can take place. 

The most popular baud is 9600 bps. The higher 

the baud rate goes, the faster data is transmitted 

however, for most microcontrollers, the speed 

won’t exceed 115200 bps (over that speed 

communication starts to give errors as clocks 

are not providing the right sampling periods 

anymore). The protocol is highly configurable 

and one critical part is making sure that both 

the transmitter and the receiver on the serial bus 

use the same protocol and parameters.  

 

3. SOFTWARE ASPECTS ON THE 
ARDUINO UNO BOARD SERIAL 
COMMUNICATION 

 

The Arduino IDE originated from the open 

source Processing programming language that 

used an integrated development environment 

(PDE not IDE) to teach the fundamentals of 

computer programming in a visual context. 

Processing language was based on Java, but 

used a simplified syntax and a graphics user 

interface (GUI). Processing used the concept of 

sketch for programs and that of sketchbook for 

organizing programs in projects stored in a 

directory. The Processing application was 

based on the PApplet class where the 

programmer had to override two methods: 

draw() and setup(). The code in the draw() 

method runs continuously until the program is 

stopped while that in the setup() method runs 

once when the code is started. Processing was 

the one that influenced the creation of the 

Wiring development platform (containing a 

programming language, an IDE and a 

microcontroller). The Wiring IDE is a cross-

platform application written in Java which is 

derived from PDE that includes a C/C++ 

library called "Wiring" to make input/output 

operations easier. Wiring programs are written 



9 

 

 

in a mixed dialect of C and C++. A minimal 

program requires only two functions, setup() 

and loop(). The setup() runs once at the start of 

a program and is used to define the initial 

settings for the code in the microcontroller. The 

loop() function is called repeatedly until the 

microcontroller is powered off or reset. The 

Arduino IDE uses the same functions as Wiring 

to setup and run an application. The 

communication between the microcontroller 

(also called board) and the PC is serial and is 

achieved in the Arduino programming language 

with the help of the Serial object. The 

begin() function of this object allows to 

define the serial communications parameters 

like the speed (300, 600, 1200, 2400, 4800, 

9600, 14400, 19200, 28800, 38400, 57600, or 

115200), the data, parity, and stop bits. By 

default these values are 8 data bits, no parity, 

one stop bit. A piece of code that wants to 

communicate over the serial port must define 

the speed as in the following code: 

 
include <Servo.h> 

 

  Servo servo1; //servo1-4 objects 

  . . .  

  Servo servo4; // 4 

 

void setup() 

{ 

//attach servo objects to pins 

  servo1.attach(4); // servo1 on pin 4 

  . . . 

  servo4.attach(7); // servo4 > 7 

 

//USB serial communication speed 

  Serial.begin(9600);  

 

//initialize the servo positions 

  servo1.write(90); //  servo1 > home 

. . . 

  servo4.write(150);// servo4 > closed 

 

} 

The setup() must also contain any other 

initializations necessary to interact with the 

hardware connected to the board. The Serial 

object has the available() function to get 

the number of bytes available for reading from 

the serial port (stored in a 64 bytes receive 

buffer). This is useful if bytes are sent to the 

board over the USB port. In order to read these 

bytes the read() function of the same object 

must be used. For each call read() will read 

one byte from the receive buffer. The 

write() function is used to send a byte or a 

series of bytes over the serial port while the 

print() function is used to send a character. 

The following code tests if characters are 

present on the serial port. If no characters are in 

the buffer it will send back the positions of the 

four servos over the serial to the PC and the 

Java application will read it. 

 
void loop() 

{ 

  if (Serial.available() == <0) { 

    servostate = servo1.read(); 

    Serial.write(servostate); 

    Serial.write(','); 

. . .  

    servostate = servo4.read(); 

    Serial.write(servostate); 

    Serial.write(255); 

  } 

// check if data is sent 

  if (Serial.available() > 0) { 

    int index = 0; 

// wait for the buffer array to fill 

    delay(500); 

// number of sent characters 

    int numChar = Serial.available();  

    if (numChar > 24) { 

      numChar = 24; 

    } 

// fill the buffer with the characters 

    while (numChar--) { 

      buffer[index++] = Serial.read(); 

    } 

  . . .  

} 

 

4. SERIAL COMMUNICATION 
OVER USB IN JAVA BASED ON 
ARDULINK LIBRARY 

 

Java programming language can be used for 

serial communication over the USB with the 

help of Ardulink library [2]-[5]. The following 

Java code is stored in the RobotComV0 class. 

USB port communication is made using the 

Link class. This will register a 

RawDataListener to receive data from 

Arduino and then the connection to the board 

will be made with the connect() method. 

Data is sent to the serial port using the 



10 
 

 

writeSerial() method, while data 

received from the USB port is processes using 

the parseInput()method. This method 

implements an interface for the 

RawDataListener class and returns the 

string read from the serial port to the Java code 

and sets the values of the q1, q2, q3, q4 

instance variables as shown in the following 

piece of code: 

 
import java.util.List; 

import org.zu.ardulink.Link; 

import 

org.zu.ardulink.RawDataListener; 

 

public class RobotComV0 implements 

RawDataListener { 

  final Link link = 

Link.getDefaultInstance(); 

  StringBuilder build; 

  int q1, q2, q3, q4; 

 

public RobotComV0() { 

. . .  

  boolean connected = 

link.connect(port, 9600); 

. . .  

    } 

 

public void program() throws 

InterruptedException { 

. . . 

  link.writeSerial("q450"); 

. . . 

  link.disconnect(); 

} 

 

public static void main(String[] args) 

{ 

  RobotComV0 ar = new RobotComV0(); 

  try { 

    ar.program(); 

  } catch (InterruptedException e) { 

  } 

} 

public void parseInput(String string, 

int nBytes, int[] message) { 

  build = new StringBuilder(nBytes + 

1); 

  for (int i = 0; i < numBytes; i++) { 

    build.append((char) message[i]); 

  } 

  q1 = (int) message[0]; 

  q2 = (int) message[2]; 

  q3 = (int) message[4]; 

  q4 = (int) message[6]; 

  } 

} 

 

REFERENCES  
 
[1] https://learn.adafruit.com/memories-of-an-

arduino/arduino-memory-architecture  

[2] ANTAL, Tiberiu Alexandru. Arduino Leonardo 

programming under Windows, in Java, from 

JDeveloper using Ardulink. ACTA TECHNICA 

NAPOCENSIS - Series: APPLIED 

MATHEMATICS, MECHANICS, and 

ENGINEERING, Nr. 60, Vol. 1, 2017, p.7-2, 

ISSN 1221-5872. 

[3] ANTAL, T. A., Elemente de Java cu Jdeveloper 

- îndrumător de laborator, Editura UTPRES, 

2013, p.150, ISBN: 978-973-662-827-6. 

[4] ANTAL, T. A., Java - Iniţiere - îndrumător de 

laborator, Editura UTPRES, 2013, p. 246, 

ISBN: 978-973-662-832-0. 

[5] ANTAL, Tiberiu Alexandru, CHELARU, 

Julieta Daniela. A multithreaded java client-

server model for robot interaction. ACTA 

TECHNICA NAPOCENSIS - Series: APPLIED 

MATHEMATICS, MECHANICS, and 

ENGINEERING, Nr. 60, Vol. 3, 2017, p.7-2, 

ISSN 1221-5872. 

 

 

 
CONSIDERAŢII PRIVIND INTERACŢIUNEA SERIALĂ DINTRE PC ŞI MICROCONTROLERUL Arduino 

UNO R3, ÎN JAVA, FOLOSIND JDEVELOPER, PENTRU UN ROBOT SERIAL 3R UTILIZÂND 
BIBLIOTECA ARDULINK. 

 

Rezumat: Lucrarea prezintă o modalitate de comunicare serială, în limbajul de programare Java, bazată pe biblioteca 

Ardulink, folosind mediul JDeveloper, pentru programarea poziţiei servomotoarelor unui manipulator serial 3R care 

foloseşte microcontrolerul Arduino UNO R3. Codul dă implementarea în C sub mediul Adruino şi cel Java sub mediul 

JDeveloper pentru comunicaţia serială bidirecţională dintre calculatorul pe care rulează Java şi microcontrolerul 

Arduino UNO R3. 

 

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca, 

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul 

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.  


