
11

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
 Vol. 61, Issue I, March, 2018

3R SERIAL ROBOT CONTROL BASED ON ARDUINO/GENUINO UNO, IN

JAVA, USING JDEVELOPER AND ARDULINK

Tiberiu Alexandru ANTAL

Abstract: The paper presents a scalable command strategy, in Java programming language, based on

the Ardulink library, through strings, using JDeveloper IDE, of the servomotors from a 3R serial robot

arm based on ARDUINO / GENUINO UNO microcontroller. The code gives the implementation in C

under the Adruino IDE for reading and extracting the commands for servomotors, the serial

communication parameters between the PC and the microcontroller, and the Java code for the serial

transmission of the command line from the PC to the ARDUINO / GENUINO UNO microcontroller.

Key words: Java, JDeveloper, Arduino, Microcontroller, Ardulink.

1. INTRODUCTION

The paper gives a simple method of

controlling a 3R serial robot that uses four

servos (one used to drive the gripper) based on

the Arduino/Genuino Uno microcontroller [1].

The serial robot is shown in Figure 1 and is

based on the “DIY Control Robot Arm kit for

Arduino-Rollarm” found at

https://www.sunfounder.com/learn/category/DI

Y-Control-Robot-Arm-kit-for-Arduino-

Rollarm.html.

The paper does not intend to discuss aspects

related to the mechanical part and the

mechanisms used in the construction of the

robot. However, it must be emphasized that the

robot arm is supported entirely by the servo1

(Figure 1) without any other machine parts that

take up some of the load or stiffen the structure.

This simplistic design will lead to a higher

mechanical stress and a faster wear of the

servomotor from the base compared to the other

three servomotors.

2. ROBOT ARM HARDWARE

The Arduino/Genuino Uno boards are in fact

the same board. Arduino Uno is the brand used

to sell the board in the USA while Genuino

Uno is the brand used outside the USA. Both

boards are programmed offline using the

Arduino Desktop IDE [1], which must be

installed before testing the code. The Uno is

programmed using the Arduino Software

(IDE), our Integrated Development

Environment common to all our boards. The

robot arm kit from Figure 1 is using the

SunFounder Mars Board from Figure 2 which

is an Arduiono Uno compatible board using the

ATmega328P as processor and the same

Optiboot bootloader as Uno (as a result it is

programmable with Arduino IDE). The board is

designed better than Arduino Uno as it’s using

the more stable and reliable FTDI232R for

USB-to-serial and Type-C USB Port (supports

reversible plug orientation), adds a 5V power

switch to control the board power (avoiding

frequent plugging) - see

https://www.sunfounder.com/sunfounder-mars-

board-compatible-for-arduino-uno-r3.html for

more detailed information. The Mars Board is

connected to the servos by using the Extension

Board from Figure 3. If the board is powered

with the help of two 18650 batteries, with the

power switch on and plugged into the USB Port

of the PC, the Arduino IDE will identify the

board as Arduino/Genuino Uno (Figure 4)

communicating on COM3 (Figure 5) serial

port.

12

Fig. 1. – The “DIY Control Robot Arm kit for Arduino-Rollarm”.

Fig. 2. – The SunFounder Mars Board.

Fig. 3. – The SunFounder Extension Board for Mars

Board.

Fig. 4. – Identification of the “SunFounder Mars

Board” in the Arduino IDE.

13

Fig. 5. – Port detection on the “SunFounder Mars

Board” based on the Arduino drivers.

3. ROBOT ARM SOFTWARE

The following code uploaded from the

Arduino IDE to the Mars Board over de USB

Port will drive the servos of the robot. The code

is written to work with four servos; however it

can be easily scaled to a higher number of

servos if it’s used on a robot with a different

mechanical structure (with more servos). The

Arduino programming language is C/C++

based and is extended through the use of

libraries. The Servo standard library allows an

Arduino board to control hobby servos (cheap

servos under 100 USD). Standard servos allow

the shaft to be positioned at various angles

between 0° and 180°. However, hobby servos

will be destroyed if are rotated to their extreme

values, so a reasonable rotation domain would

be from 20° to 160°. The Servo library supports

up to 12 motors on most Arduino boards.

attached() function is used to connect the

Servo object to a pin. write() function will

set the angle of the shaft (in degrees), moving

the shaft to that orientation. Aruino boards are

using serial communication on pins TX/RX

which are TTL logic levels (5V or 3.3V

depending on the board and not +/- 12V). All

Arduino boards have at least one serial port

(also known as a UART or USART) called

Serial. It communicates on digital pins 0

(RX) and 1 (TX) as well as with the computer

via USB. The Serial port has functions that

can be used to communicate over the port to

some other serial device. Also, the Arduino

IDE has a built-in serial monitor to

communicate with an Arduino board (see

Figure 6). This must have the same baud rate

(9600 baud in this case) used in the call to

Serial.begin() function.

Serial.write() sends bytes to the serial

port while Serial.print() sends ASCII

characters so people can read easily.

Serial.available() gets the number of

bytes (characters) available for reading from

the serial port and stored in the serial receive

buffer (which holds 64 bytes).

#include <Servo.h>

char buffer[24]; //if more servos are used increase buffer size

Servo servo1; // creare servo1 obiect

Servo servo2; // 2

Servo servo3; // 3

Servo servo4; // 4

void setup()

{

 servo1.attach(4); // servo 1 attached to pin 4

 servo2.attach(5); // servo 2 attached to pin 5

 servo3.attach(6); // servo3 > 6

 servo4.attach(7); // servo4 > 7

 Serial.begin(9600);

 servo1.write(90); // servo1 > home

 servo2.write(90); // servo2 > home

 servo3.write(90); // servo3 > home

 servo4.write(150); // servo4 > closed

 Serial.println("STARTING...");

}

void loop()

14

{

 if (Serial.available() > 0) { // check if data is sent

 int index = 0;

 delay(500); // wait for the buffer to fill

 int numChar = Serial.available(); // number of sent characters

 if (numChar > 24) {

 numChar = 24;

 }

 while (numChar--) {

 // fill the buffer with the sent characters

 buffer[index++] = Serial.read();

 }

 splitString(buffer); // extract the angles for the servo1, …, 4

 }

}

void splitString(char* data) {

 Serial.print("Data entered: ");

 Serial.println(data);

 char* parameter;

 parameter = strtok (data, " ,"); //String > token

 while (parameter != NULL) { // if it’s not end of string then

 setServo(parameter); // run setServo

 parameter = strtok (NULL, " ,");

 }

 // Clear the string and the serial buffer

 for (int x = 0; x < 24; x++) {

 buffer[x] = '\0';

 }

 Serial.flush();

}

//print() and println() are for the Serial Monitor Window

void setServo(char* data) {

 //identify the servo by: q1,q2,q3 sau q4

 if (((data[0] == 'Q') || (data[0] == 'q')) && ((data[1] == '1'))) {

 int val = strtol(data + 2, NULL, 10); // String to long integer

 val = constrain(val, 0, 180); // limit values

 servo1.write(val);

 Serial.print("Servo1 = ");

 Serial.println(val);

 }

 if (((data[0] == 'Q') || (data[0] == 'q')) && ((data[1] == '2'))) {

 int val = strtol(data + 2, NULL, 10);

 val = constrain(val, 0, 180);

 servo2.write(val);

 Serial.print("Servo2 = ");

 Serial.println(val);

 }

 if (((data[0] == 'Q') || (data[0] == 'q')) && ((data[1] == '3'))) {

 int val = strtol(data + 2, NULL, 10);

 val = constrain(val, 0, 180);

 servo3.write(val);

 Serial.print("Servo3 = ");

 Serial.println(val);

 }

 if (((data[0] == 'Q') || (data[0] == 'q')) && ((data[1] == '4'))) {

 int val = strtol(data + 2, NULL, 10);

 val = constrain(val, 40, 150);

 servo4.write(val);

 Serial.print("Servo4 = ");

 Serial.println(val);

 }

}

15

The structure of an Arduino application is

organized in two sections, the setup() and

the loop() functions. The setup() function

is used for initializations and is called only

once when the code starts. In this example it is

used to associate the servos to the de pins of the

Mars Board through the Extension Board.

Then, the serial communication speed is set to

9600 baud and the initial positions for the

servos are set. The loop() function is

executed repeatedly in order obtain an active

control, through the program, over the devices

connected to the Arduino Board. As shown in

Figure 5 the code is able to drive a single servo

ore more by handling the content of a single

string. The string may have at most 24

characters and contains a list of qxyyy

elements. Where x is and integer between [1,4]

and yyy integer between [20,160]. q1100 will

drive the q1 servo to an angle of 100°, while

q3120,q4150 will drive q3 servo to 120° and q4

servo to 150°.

Fig. 6. – Arduino IDE built-in serial monitor window.

4. SOME WORDS ON THE SERVOS

A servo is a small DC motor with a

potentiometer and a control circuit. The motor

is attached by gears to the control wheel. As the

motor rotates, the potentiometer's resistance

changes and the control circuit can precisely

regulate how much rotation there is and in

which direction.

Servos are controlled by sending an electrical

pulse of variable width, or pulse width

modulation (PWM), through the control wire.

There is a minimum pulse width, a maximum

pulse width, and a repetition rate. A servomotor

can usually only turn 90° in either direction for

a total of 180° movement.

 The SunFounder servos should have been as

those presented in the Users Manual (see Figure

8), that is Digital Servo 9g Metal Gear

SF180M. However, as shown in Figure 9, all

servos are of type 9g SF180. This means that

the gear part is made of plastic and not metal.

All four servos are 9g that is they have 9 grams

and they can rotate 180°. The connector for this

type of servo is shown in Figure 6.

Fig. 7. – Connector pinout for 9g SF180 servos.

Due to the poor mechanical design, servo1

holds the full weight of the robotic arm. This

mass will produce inertial forces when the arm

moves. One way of dealing with this is the

following code that will lead to a low

acceleration of the arm when servo1 is moving

the rest of the arm. M1 variable is of type int.

val is the angle position to which we want to

move the servo. The for cycles are moving

with a 1 degree increment step the servo to the

desired angle. By breaking a large angle

variation in small and constant angle variations

we obtain lower inertial forces. This way the

movements won’t be sudden and the servo1

will be protected against high inertial forces.

 M1 = servo1.read();

 if ((val - M1) >= 0)

 {

 for (; M1 <= val; M1++)

 {

 servo1.write(M1);

 delay(50);

 }

 }

 else

 {

 for (; M1 > val; M1--)

 {

 servo1.write(M1);

 delay(50);

 }

 }

4. USING JAVA TO SEND STRINGS
TO THE MARS BOAD

Java programming language can be used for

serial communication over the USB with the

16

help of Ardulink library [1]-[3]. The typical

code for this must containg the following lines:

import org.zu.ardulink.Link;

…

Link link = Link.getDefaultInstance();

…

link.writeSerial("q450");

If the USB port communication is initialized

properly in Java via Ardulink the last line sends

q450 string over the USB to the microcontroller

(move servo q4 in 50° angle). The control of

the robot servomotors through strings is

essential in the situation of implementing

client-server systems [4] for remote access to

the robot via the Internet as strings can

transferred and inspected easily over the

network.

Fig. 8. – SunFounder servos according the User

Manual.

If changes are required to the code due to a

robot with different mechanical structure no

modification at the Java code level is required.

However, the code uploaded to the Arduino

board must be changed to work with less or

more servos. This only implies to change the

buffer size and to add or remove the proper ‘q’-

lines to the setServo() function.

Fig. 9. – Real SunFounder servos from the package.

REFERENCES

[1] ANTAL, Tiberiu Alexandru. Arduino Leonardo

programming under Windows, in Java, from

JDeveloper using Ardulink. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, Nr. 60, Vol. 1, 2017, p.7-2,

ISSN 1221-5872.

[2] ANTAL, T. A., Elemente de Java cu Jdeveloper

- îndrumător de laborator, Editura UTPRES,

2013, p.150, ISBN: 978-973-662-827-6.

[3] ANTAL, T. A., Java - Iniţiere - îndrumător de

laborator, Editura UTPRES, 2013, p. 246,

ISBN: 978-973-662-832-0.

[4] ANTAL, Tiberiu Alexandru, CHELARU,

Julieta Daniela. A multithreaded java client-

server model for robot interaction. ACTA

TECHNICA NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, Nr. 60, Vol. 3, 2017, p.7-2,

ISSN 1221-5872.

CONTROLUL UNUI ROBOT SERIAL 3R BAZAT PE ARDUINO / GENUINO UNO, ÎN JAVA, DIN MEDIUL

JDEVELOPER ŞI CU BIBLIOTECA ARDULINK.

Rezumat: Lucrarea prezintă o strategie scalabilă de comandă, din Java cu biblioteca Ardulink, prin şiruri de caractere,

utilizând mediul JDeveloper, a unor servomotoare dintr-un robot serial 3R cu placă ARDUINO/GENUINO UNO.

Codul dă implementarea în C sub mediul Adruino a citirii şi a extragerii comenzilor pentru servomotoare, parametrii

comunicaţiei seriale între PC şi microcontroler şi codul Java pentru transmiterea serială a şirului de comandă de la PC la

microcontrolerul ARDUINO/GENUINO UNO.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

