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NEW APPROACHES ON NOTIONS FROM ADVANCED MECHANICS 
 

Iuliu NEGREAN 

 
Abstract: The dynamical study of the current and sudden motions of the rigid body, and in accordance with 

differential principles typical to analytical dynamics of systems, is based, between others, on advanced notions, such as: 
angular momentum, kinetic energy, acceleration energies of different orders and their absolute time derivatives of 
higher order. Advanced notions are developed in connection with the generalized variables, also named independent 
parameters of position and orientation corresponding to holonomic rigid body. But, mechanically, the expressions of 
definition of the advanced notions contain on the one hand kinematical parameters and their differential 
transformations, corresponding to absolute motions, on the other hand the mass properties, highlighted by mass and 
inertial tensors and their generalized laws. By means of the researches of the author, in this paper a few essential 
reformulations and new formulations concerning input expressions and parameters from advanced kinematics and 
dynamics will be presented.  They become input expressions compulsory included in dynamics equations of higher order, 
corresponding to the current and sudden motions in the case of the rigid body. These are extended on the multibody 
systems. Within of the paper a few reformulations on the fundamental theorems from dynamics, differential generalized 
principle in analytical dynamics, as well as generalization of Gibbs – Appell’s equations will be also defined. 

Key words: advanced mechanics, dynamics, advanced notions, dynamics equations, matrix exponentials. 

 

1. INTRODUCTION 
 

The solid body consists one of physical form 

of existence of the matter in material universe. 

As a result, the solid body is considered material 

continuum. According to this property, to obtain 

an exact solution, geometrically, the solid body 

is decomposed in the infinity of the elementary 

particles, having elementary mass infinitesimal 

with continuous distribution entire geometrical 

shape of the solid body. If the distances between 

elementary particles are kept constant entire 

solid body, then it has the rigid character (rigid 

solid body (S)). When the density property is 

kept constant inside rigid structure, it obtains 

homogeneous rigid solid. In this case, when the 

integration limits on the geometrical outline are 

well-defined, it obtains homogeneous body with 

simple or regular geometrical shape. In this last 

case, geometrical and mass integrals are applied. 

Before mechanical study (statics, kinematics 

and dynamics), it must compulsory established 

the geometrical state to any rigid solid to each 

moment in Cartesian space. In the view of this, 

at beginning, geometrical state of the simplest 

model, named material point, is studied (Fig.1). 

Fig.1 Position and Orientation 

Using [1] and [2], a few notations are applied: 

{ } { }
{ } { } { }

; ; ; ; ;

; ; ; ; ; ; ; ;
0 0 0 0u v w u v w where

u x y z v y z x u w z x y v

χ χ= = 
 

= = ≠ = ≠ 
(1) 

{ } { }
{ } { } { }

0 0 0 0u; v ; w ; u ; v ; w where

u i ; j ; k ; v j ; k ; i u; w k ; i ; j v

χ χ= =  
 

= = ≠ = ≠  
(2) 

{ }; ;χ χ χ χδ α β γ= ; cos c ; sin sχ χ χ χδ δ δ δ= = (3) 

{ }0 0 0 0O x y z 0≡ ; { }0 0 0 0O x y z 0′ ′ ′ ′ ′≡ ; { }Oxyz S≡ . (4) 

Notations (1) refer to the Cartesian coordinates 

or axes, the symbols (2) highlight unit vectors, 

while (3) express angles and direction cosines. 
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According to Fig.1a, the geometrical state to any 

material point (as exampleO ) is named position. 

This is defined by means of the position vector: 

[ ] { }
T

0 0 0 0r x y z , relative to 0 frame= . (5) 

If material point is free in Cartesian frame, the 

three linear coordinates of (5) are independent. 

They are also named degrees of freedom (d.o.f.). 
The study is extended on vector or Cartesian 

axis (see Fig.1b). In this case, the geometrical 

state is named orientation. This is highlighted by 

means of the unit vector. Using (3) – (13), any 

unit vector { }Sχ ∈  in relation to { }0 /{ }0′ frame 

is characterized by the direction cosines, that is: 

0

T

0

0

i c c

j c c

cck

χ

χ

χχ

α α
χ χ β β

γγ

          = ⋅ = ≡           

   (6) 

where T 2 2 2c c c 1χ χ χχ χ α β γ⋅ = + + = .    (7) 

Due to (7), the orientation to any vector or axis 

is defined by means of two independent angles. 

The above geometrical aspects are extended on a 

reference system orthogonal and right oriented 

(see Fig.1b, { }Ouvw Oxyz S≡ ≡ ) relative to { }0 . 

Its geometrical state is position and orientation. 
Unlike position defined by (5), for orientation, 

according to [1] – [8], first of all is established: 

[ ]
0

S

x y z

c c c

R i j k c c c

c c c

α α α
β β β
γ γ γ

      
       = =        
       

(8) 

This is named the resultant rotation (orientation) 

matrix. It contains the unit vectors belonging to 

{ }S in relation to{ }0 /{ }0′ . Every unit vector has 

two independent angles. Beside (7), between the 

unit vectors there are other three relationships: 
T

u v u v u vu v c c c c c c 0, v uα α β β γ γ⋅ = ⋅ + ⋅ + ⋅ = ≠ (9) 

So, in the general case, resultant orientation to 

any reference frame { }S relative to another for 

example { }0 /{ }0′ is defined by means of three 

orientation angles and independent (three d.o.f). 
According to [3] – [13], they are symbolized as: 

( ) ( ) ( ) ( )
T

u v wt t t tψ α β γ=    ;        (10) 

Every angle from (10) is, geometrically, dihedral 

angle between two geometrical plans, that is: 

{ } { } { }; ; /0 0 0 0u v w cst fixed plan 0 0χ ′= = − ∈ , 

and { } { }; ;u v w 0 mobile plan Sχ = = − ∈       (11) 

Physically, every orientation angle expresses a 

simple rotation around of the axes: { }; ;u v wχ = . 

Considering the researches from [2] – [13], by 

combining the three simple rotations, twelve sets 

of the orientation angles (10) are obtained. The 

symbol from (10) is named the column matrix of 

orientation. According to same researches are 

developed expressions of definition for the three 

simple rotation matrices, below symbolized as: 

( ) ( ) ( ) ( ){ }x y zR ; R x ; ; R y ; ; R z ;χχ δ α β γ= (12) 

In this paper it proposes the generalized matrix: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x y z

yz z y

z zx x

y x xy

R ; R x ; ; R y ; ; R z ;

c s s

s c s

s s c

χ

χ χ χ

χ χ χ

χ χ χ

χ δ α β γ

δ ∆ δ ∆ δ ∆

δ ∆ δ ∆ δ ∆

δ ∆ δ ∆ δ ∆

 =
 

  ⋅ − ⋅ ⋅   
 = ⋅ ⋅ − ⋅ 
  
 − ⋅ ⋅ ⋅   

(13) 

{ }{ }
{ }uv yz zx xy

u ; v

where ; ;
χ

∆ ∆ ∆ ∆
=

= =       (14) 

( ) ( ) ( )z xy z x y

yx z

1
;; ;

if ; ;

0
χ

γ αβ γ α β
δ

βα γ

          
= =       

         

; 

{ }
{ }

{ }{ }
u x y z uv

u u ; v

and ; ; 1
χ χ

∆ ∆ ∆ ∆ ∆
= =

= = − .    (15) 

Successively, substituting (14) and (15) in the 

generalized form (13) simple rotation matrices 

(12) are obtained as expressions of definition. In 

consonance with (13) – (15), new notations are: 

( )
( ) ( ) ( )

T

uv yz zx xy

3 1

c c cχ χ χ∆ δ ∆ δ ∆ δ ∆
×

 = ⋅ ⋅ ⋅  ; (16) 

( )
( ) ( ) ( )

T

u x y z

3 1

s s sχ χ χ∆ δ ∆ δ ∆ δ ∆
×

 = ⋅ ⋅ ⋅  .   (17) 

The generalized matrix becomes new expression: 

( ) 3 uv uR ; Iχχ δ ∆ ∆ = ⋅ + ×  
;   (18) 

where symbol 3I  is unit matrix, and u∆ ×  
 is 

skew-symmetric matrix associated to (17). The 

matrix (18) is obtained with classical formula: 

( ) ( ) ( )T

3R ; 1 c I c sχ χ χ χχ δ χ χ δ δ χ δ= ⋅ ⋅ − + ⋅ + × (19) 

According to researchers from [1] – [6], the 

three simple rotations from (10) are performed 

either around of the moving axes or (relatively) 

fixed axes belonging to { }S  or { }0′ /{ }0 . Thus, 

the resultant rotation matrix is determined with: 

[ ] ( ) ( ) ( )
0

u v wS
R R u ; R v ; R w ;α β γ= ⋅ ⋅ .  (20) 
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Using results of the author regarding to matrix 

exponentials [2] – [13], resultant rotation matrix 

(20) is below written by means of exponentials: 

( )
{ } { }{ }

{ }{ }
{ }

{ }

u ;v ;w;

3 uv u
u ; vu ;v ;w

R ; exp

exp I

χ

χ χ
χχ δ

χ
χ

χ δ χ δ

χ δ ∆ ∆

=

=

  
 = × =       

   × = ⋅ + ×      

∑∏

∏ ∏

(21) 

[ ] ( )
{ }

[ ] [ ] [ ]

[ ]

u v w
0 u v w

S
;

u v w

u v w

R R ; e e e

exp u exp v exp w

exp u v w

χ

α β γ
χ

χ δ

χ δ

α β γ

α β γ

× × × = = ⋅ ⋅ =
 
 

= × ⋅ × ⋅ × = 
 
 = × + × + × 

∏

(22) 

 Considering the geometrical state of position 

(5) and the column matrix of orientation (10), 

the geometrical state corresponding to reference 

system orthogonal and right oriented is named 

position and orientation. This is characterized by 

six independent parameters (see (5) and (10)). 

 The above mathematical conclusions about 

position and orientation are generalized in the 

case of the rigid solid. Considering definitions 

form the first aligned of this section, any rigid 

body is composed on the one hand by infinity of 

material points, one the other hand by infinity of 

geometrical axes parallel and perpendicular one 

to another. They have a continuous distributed 

inside of the geometrical shape of the rigid ( )S . 

The same body is also composed by infinity of 

assemblies of three geometrical plans orthogonal 

and continuous distributed in entire rigid solid. 

Fig.2 Rigid Body Free in Cartesian Frame 

Geometrically, only one ensemble composed of 

three geometrical plans and orthogonal is enough 

to choose. It determines a reference system right 

oriented with the origin in arbitrary point O  of 

the rigid body. According to (4) and Fig. 2, this is 

symbolized { }Oxyz S≡ . Due to rigid character, 

the system{ }S is linked of inside body structure. 

But, the position and orientation of this frame is 

defined by the (5) and (10) expressions. Taking 

two material points from internal structure of the 

body, as example M O≠  and { }C O;M≠  it can 

write the following position expressions [4]: 

( ) ( ) ( ) ( ) [ ]( )
0 S

M 0 M 0 MS
r t r t t r t R tρ ρ= + = + ⋅ ;  (23) 

( ) ( ) ( ) ( ) [ ]( )
0 S

C 0 C 0 CS
r t r t t r t R tρ ρ= + = + ⋅ ;  (24) 

where   ( ) ( )M Ct tρ ρ≠  and ( ) ( )M Cr t r t≠ .     (25) 

When position ( )0r t  and orientation [ ]( )
0

S
R t  of 

the moving frame { }Oxyz S≡  are known, then 

the position equation for any material point of 

the body can be determined. At the same time it 

observes that the orientation is invariant for all 

points of the rigid solid. So, geometrically and 

mechanically the body is substituted by means 

of its moving frame { }Oxyz S≡ . These aspects 

demonstrate the authenticity that the geometrical 

state of the any rigid solid, free in the Cartesian 

space, is named position and orientation. This is 

geometrically characterized by means of the six 

independent parameters (six d.o.f.), as follows: 
 

( )
( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

T

0 0 00

6 1
T

u v w

x t y t z tr t

X t ........ ..........................................

t t t tψ α β γ
×

       = =   
        

(26) 

 

Considering [2] – [9], ( )six d .o.f . are symbolized: 

( ) ( ) ( )
T0

j; t q t ; j 1 6θ θ θ  ≠ = = →  ,      (27) 

( ) ( ){ }j j j0 for q linear ; 1 for q angular∆ = − − (28) 

where ( )jq t  is named the generalized coordinate;  

and (28) is operator that highlights type ( )d.o.f . ; 

( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

m

m

i i i i

t ; t ; t ; ; t

q t ; q t ; q t ; ; q t

i 1 n, m 1

θ θ θ θ
   

=  
   
    

=   
= → ≥   

& &&
L

& && L

.    (29) 

0x

0z
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0i

0x′
0k

0z′

0y′0j

0i

0k

yβ

xα

zγz

x

c

i c

c

α
β
γ

 
 =
 
 

z

c

k c

c

α
β
γ

 
 =
 
 

y

c

j c

c

α
β
γ

 
 =
 
 

x

y

yβ&

xα&

( )S
1F

zγ&

1A

( )S
iF

iA

( )S
nF

nA

iu
( )S

iρ

0O

{ }0

O { } { };0 S′

0a

ω

0v

ε
a

v

v dm⋅

a dm =dF⋅

Cv

dm

CM v⋅

Ca
R

CrMr

0r

( )S
Mρ

( )S r ∗

( )S
Cρ

( )S
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The symbols, from expressions (29), highlight 

the generalized variables of higher order in the 

case of the current and sudden movements. The 

character ( )m  represents the time deriving order. 

 In the advanced mechanics, instead of (10), 

named column matrix of orientation, the angular 

vector of orientation is used, according to [4]. Its 

expression of definition is below written thus: 

( ) ( ) ( )
( ) ( ) ( )

0
u v w

u u v

J t t t

u R u ; v R u ; R v ; w

ψ α β γ

α α β

  − −  =  
 
 ⋅ ⋅ ⋅   

; (30) 

( ) ( ) ( ) ( ) ( )
( )

0
u v w

j j

t J t t t t

q t ; j 1 k 6, t

ψψ α β γ ψ

ψ ∆ ∗

 =  − −  ⋅ =  
  = ⋅ = → =   

; (31) 

The conclusions and expressions of definition, 

synthetically disseminated in this introductory 

section, are compulsory applied in the advanced 

kinematics and dynamics of mechanical system. 

 

2. INPUT EXPRESSIONS IN DYNAMICS 

 

Based on especially of the author researches, 

in this paper, a few reformulations and new 

formulations regarding the advanced notions of 

dynamics will be presented. In the view of this 

beside the equations (1) – (31) from first section, 

the other equations regarding general motion, 

mass properties and the distribution of the active 

forces must be synthetically disseminated. For 

this analysis, it considers the rigid solid ( )S  in 

accordance Fig. 2, found in the general motion. 

● The parametric equations of motion are (26). 

The first three (5) express resultant translation 

motion, while the last three (10) define resultant 

rotation movement. This is also characterized by 

(12) – (22), (30) and (31). Taking to study (23), 

it expresses the absolute position equation. It 

shows the variable distribution from to another 

material point of the body. Applying the first 

time and absolute derivative on (23), it obtains: 

( ) ( ) ( ) ( ) ( )

( ) ( ) [ ] ( ) [ ]( )

0
S

M 0 M 0 M
S

0 0 T 0 S

0 MS SS

r t r t t r t R t

r t R t R t R t

ρ ρ

ρ

  = + = + ⋅  
 

 = + ⋅ ⋅ ⋅   

& & & &&

& &

. (32) 

In accordance to [1] – [7], the skew symmetric 

matrix associated to angular velocity vector is: 

( ) [ ] ( ) ( )
0 0 T

SS
R t R t ω  ⋅ = × 
& .   (33) 

As a result, linear velocity and acceleration are: 

M 0 Mv v ω ρ= + × ;     (34) 

M 0 M Ma a ε ρ ω ω ρ= + × + × × .   (35) 

Using (21) and (22), the position equation is 

written by matrix exponentials, according to: 

( ) ( )
{ }{ }

( ) [ ]{ }

S

M 0 M
u;v ;w

S

0 u v w M

r t r t exp

r t exp u v w

χ
χ

χ δ ρ

α β γ ρ

=

  
 = + × ⋅ =    

   
 + × + × + × ⋅  

∑
(36) 

In advanced kinematics and dynamics, the time 

derivatives of higher order for position vectors 

and rotation matrices must be used as follows: 

( ) ( )
( )

( )

( )

( )

( )

( )

( )

( )

m
k k 1 k6

M M
M jk m

j 1
j

r

m p
k p6 k 1

p 1 M
jm

j 1 r 1
j

d r t r
v q

d t
q

k p
rp ! m !

q
p! m p !

q

−

=

+
−−

=

= =

  
∂  = = ⋅ +

  
∂   

 
  

−    ∂⋅   ⋅ ⋅ ⋅  +  ∂      

∑

∏
∑∑

(37) 

[ ]( ){ } [ ] ( )
( )kk

0 0

j jk S S

d
R t R q t

d t
 = ⋅ ∆ = 

  (38) 

( ) [ ]{ }
( )

( )

( )

( ) [ ]{ }
( )

( )

( ) [ ]{ }
( )

( )

( )

( ) ( ) [ ]
( ) ( )

m ki
0

j jm S
j 1

j

r

mp k p6 k 1
0p 1

j jp m S
j 1 r 1

j

m k6
0

j jm S
j 1

j

r

m p k p
0p 1

j jm S

j

R q

q

k p
d

R q
p! dt

q

R q

q

k p
p ! m !

R q
p! m p !

q

=

−−
=

= =

=

+ −
=

 
∂ 

⋅∆ ⋅ + 
 ∂ 

 
−    ∂    

+ ⋅ ⋅ ∆ ⋅ =    
    ∂    

 
∂ 

= ⋅∆ ⋅ + 
 ∂ 

−   ⋅ ∂  
⋅ ⋅ ⋅ ∆ ⋅  

+   ∂

∑

∏
∑∑

∑

∏6 k 1

j 1 r 1

−

= =

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
  

   
  
        

∑∑

 

and         
{ }

( ) { }

k 1; k 1;2;3;4;5; .....

m k 1 ; m 2;3; 4;5; .....

 ≥ = 
 

≥ + =  
; 

where the symbols: ( )k  and ( )m are the orders 

of the time derivatives concerning (37) and (38). 

According to researches of author [2] – [13], 

expressions of definition for angular velocities, 

and then angular accelerations of higher order are 

established on the basis of matrix exponentials: 

( ) ( ) ( )u v wt t tω α β γ − −  =     (39) 

( ) [ ]{ } ( )

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ){ } ( )

0

0

0

0u

v u

w u v

t exp u

t exp u t t v

t exp u t t exp v t t w

α

β α

γ α β

 = ⋅ ⋅ +
  

+ ⋅  ×  ⋅ +  
 
+ ⋅  ×  ⋅  ×  ⋅     

&

&

&

; 
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( )

( ) ( ) ( )
k

u v wt t tω α β γ − −  =     (40) 

( ) [ ]{ } ( ){
( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ){ } ( )}

0

0

0

0
k

uk

v u

w u v

d
t exp u

d t

t exp u t t v

t exp u t t exp v t t w

α

β α

γ α β

 
= ⋅ ⋅ + 

 
 

+ ⋅  ×  ⋅ +  
 
+ ⋅  ×  ⋅  ×  ⋅    
  

&

&

&

 

Remark: The using of matrix exponentials 

apparently seems to be complicatedly, but these 

have great advantages of not using reference 

systems. This is visible in above equations by 
( ) ( ) ( ) ( ){ }0 0 0 0

u ; v ; wχ = . They are corresponding 

to initial state of the moving frame { }Oxyz S≡ . 

● An essential aspect in advanced dynamics is 

reflected by the mass properties. First of all, the 

position of the mass center is determined in the 

relation with { }0 0 0 0O x y z 0′ ′ ′ ′ ′≡ , as follows below: 

( )
( ) ( )M M

C

t dm t dm
t

Mdm

ρ ρ
ρ

⋅ ⋅
= =
∫ ∫
∫

;  (41) 

( ) ( )M Ct dm M tρ ρ⋅ = ⋅∫ ;   (42) 

where (42) is the static moment relative to { }0′ . 

The position of the mass center, in the relation to 

{ }0 0 0 0O x y z 0≡ , is expressed in classical form, 

and then on the basis of matrix exponentials as: 

( )
( ) ( )

( ) ( ) ( ) [ ]( )

M M

C

0 S

0 C 0 CS

r t dm r t dm
r t

Mdm

r t t r t R tρ ρ

 ⋅ ⋅
= = =  

 
 

= + = + ⋅  

∫ ∫
∫ ; (43) 

( ) ( )
{ }{ }

( ) [ ]{ }
; ;

exp

exp

S

C 0 C
u v w

S

0 u v w C

r t r t

r t u v w

χ
χ

χ δ ρ

α β γ ρ

=

  
 = + × ⋅ =    

   
 + × + × + × ⋅  

∑
(44) 

Applying the time derivative on (43), the linear 

velocity and acceleration of the mass center are: 
 

( ) ( ) ( )

( ) ( ) [ ] ( ) [ ]( )
C 0 C

0 0 T 0 S

0 CS SS

r t r t t

r t R t R t R t

ρ

ρ

 = + = 
 

 + ⋅ ⋅ ⋅   

& & &

& &
; (45) 

( ) ( ) ( ) ( )C 0 Cv t v t t tω ρ= + × ;   (46) 

C 0 C Ca a ε ρ ω ω ρ= + × + × ×    (47) 

Linear and absolute accelerations of higher order 

corresponding to mass center are below defined: 
( )

( ) ( ) [ ]( ){ }
1

0

01

kk
S

C Ck S

d
v t r t R t

d t
ρ

+

+
= + ⋅ ;  (48) 

( )

( ) ( )
{ }{ }

( ) [ ]{ }{ }

1

01

1

01

kk
S

C Ck
u;v ;w

k
S

u v w Ck

d
v t r t exp

dt

d
r t exp u v w

dt

χ
χ

χ δ ρ

α β γ ρ

+

+
=

+

+

    
 = + × ⋅ =         

 + × + × + × ⋅
  

∑
 

Using classical expression (46)/(48) it obtains: 
( )

( )
( )

( ) ( ) ( )0

kk k

C Cki

d
v t v t t t

d t
ω ρ= + ×   ,     (49) 

( ){ } { } { }C Cwhere u ; ; v ; ; v u; u; vω ρ ρ ω χ= × = ≠ = : 

( ) ( )
( )

{ }

( )

{ }

( ) ( )
( )

{ }

( )
( ) ( )

{ }

( ) ( )
( ) ( )

{ }

k k k 1

Ck
u ;v u ;v

k 2

k k k

u ;v

k 2 3

k kk

u ;v

k j k j

kk k

u ;v

d k
t t u v u v

0 !d t

k k j 1 u v

k k 2 u v

k 1 k 2 1 u v

ω ρ

∆ ∆ δ

∆ δ

δ ∆

−

−

−

− −

       
 ×  = ⋅ + ⋅ ⋅     

      
    + − ⋅ − + − ⋅ ⋅ ⋅     


    + ⋅ − − ⋅ ⋅ ⋅     
   

+ − ⋅  − ⋅ −  ⋅ ⋅ ⋅  
  

∑ ∑

∑

∑

∑

&

&&













 


. 

In the cases of the time derivatives of order ( )k  

position of terms from (49) must be respected: 

( ) ( )( ) ( )( ){ }
( ) ( ){ }

k k

k

and 1 k 8 ; 0; k 4 6 ; 1; k 4 6

1; k 2 j ; 0; k 2 j , and j 1

δ

∆

 ≤ ≤ = ≤ ≥ 
 

= = ⋅ ≠ ⋅ ≥  
. 

 In dynamics next expression is necessary: 

( ) ( ) ( ) [ ]( ) ( )0 S S

M C CS
t t r t R t rρ ρ ρ∗ ∗= + = ⋅ + ; 

( ) ( ) ( ) ( ) ( ) ( )M Ct t t t t r tω ρ ω ρ ω ∗× = × + × . (50) 

● Beside mass and position of the mass center 

an essential aspect they have inertia properties 

in the cases of the rotation motions. These are 

named mechanical moments of inertia [4] – [5]. 

According to Fig. 2, the position of elementary 

mass ( )dm  relative to mass center is defined by 

means of the position vector as: ( )r r t∗ ∗= . But, 

considering (43), the next property is obtained: 

( ) ( )r t dm r t dm
0

Mdm

∗ ∗⋅ ⋅
= =

∫ ∫
∫

;  (51) 

( ) [ ]( )
0 S

S
wence r t dm R t r dm 0∗ ∗⋅ = ⋅ ⋅ =∫ ∫ . (52) 

Using the researches of the author [1] – [4], the 

inertial tensor and its variation law relative to 

concurrent frames is established, as follows: 

( ) ( )
[ ] ( ) ( ) [ ]

T

S

T0 0 TS S

S S

I r r dm

R r r dm R

∗ ∗ ∗

∗ ∗

 = × ⋅ × ⋅ = 
  = ⋅ × ⋅ × ⋅ ⋅    

∫

∫
; (53) 

where the mass integral is squared matrix, thus: 
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( ) ( )
T

S S S

Sr r dm I∗ ∗ ∗× ⋅ × ⋅ =∫ .   (54) 

This is inertial tensor axial and centrifugal of the 

body ( )S  in with relation { }S∗  applied in the 

mass center ( )C , having property: { } { }
OROR

S S∗ ≡ . 

From (53) the variation law of the inertial tensor 

relative to concurrent frames in the mass center: 

{ } { } { }
OROR

S and 0 0∗ ∗ ′≡ is established, as follows 

( ) ( ) [ ] [ ]
T 0 0 TS

S SS S
I r r dm R I R∗ ∗ ∗ ∗= × ⋅ × ⋅ = ⋅ ⋅∫ . (55) 

In the following steps the inertial tensor axial 

and centrifugal in relation with { }0′  is defined: 

( ) ( )

[ ] ( ) ( ) [ ]

T

S M M

T0 0 TS S

M MS S

I dm

R dm R

ρ ρ

ρ ρ

 ′ = × ⋅ × ⋅ = 
  = ⋅ × ⋅ × ⋅ ⋅    

∫

∫
; (56) 

( ) ( )
T

S S S

M M Swhere dm Iρ ρ× ⋅ × ⋅ =∫ ;  (57) 

( ) ( ) [ ] [ ]
0 0 TT S

S M M SS S
and I dm R I Rρ ρ′ = × ⋅ × ⋅ = ⋅ ⋅∫ . 

The position equation (50) is changed in a skew 

symmetric matrix, and this is substituted in (56): 

( ) ( ) ( )M C rρ ρ ∗× = × + × ; 

( ) ( ) ( ) ( )T

S C CI dm r r dmρ ρ ∗ ∗′ = × ⋅ × ⋅ + × ⋅ × ⋅∫ ∫ ;(58) 
 

( ) ( ) ( ) ( )
T T

C C C C SCdm M Iρ ρ ρ ρ ′× ⋅ × ⋅ = ⋅ × ⋅ × =∫ (59) 

[ ] [ ]
0 0 TS

S S SC SS S
I R I R I I∗′ ′= ⋅ ⋅ = + .  (60) 

According to [4] – [5], the matrix expression 

(60) characterizes the generalized variation law 

of the inertial tensor axial and centrifugal in 

relation with frame{ }0′ . The expression (59) is 

named the inertia matrix axial and centrifugal of 

the mass center relative to{ }0′ . Sometimes, the 

inertial tensor axial and centrifugal is defined in 

relation with absolute frame{ } { }
OR OR

0 0′= , thus: 

( ) ( )

( ) ( )

T

S M M

T

0 0 S SO S SO SC S

I r r dm

M r r I I I I I I∗

 = × ⋅ × ⋅ = 
 

′ ′ ′⋅ × ⋅ × + = + = + +  

∫ .(61) 

● Another essential aspect for any dynamical 

study it consists in the distribution of the active 

forces, that determine the general motion of the 

rigid solid. Its distribution is shown below as: 
( ) ( ) ( ){ }; ; ;
S S S

i i i i iF u F A i 1 nρ= ⋅ = → ;  (62) 

[ ] [ ]
0 0S S

i i i iS S
where F R F R u F= ⋅ = ⋅ ⋅ ;       (63) 

( ) ( ) ( ) ( ) [ ]( )
0 S

i 0 i 0 iS
and r t r t t r t R tρ ρ= + = + ⋅ .(64) 

As a result, the reduction torsor relative { }0′ is: 

[ ]

[ ]

n n
0 S

i iS
i 1 i 1

n
0 S

i i MS
i 1

R F R F

R u F dF a dm

∗

= =

=

 
= = ⋅ =  

 
 ⋅ ⋅ = = ⋅
  

∑ ∑

∑ ∫ ∫
;   (65) 

[ ] ( )

[ ] ( )

n n
0 S S

O i i i iS
i 1 i 1

n
0 S S

i i i MS
i 1

M F R F

R F u dF

ρ ρ

ρ ρ

= =

=

 
′ = × = ⋅ × =  

 
 ⋅ ⋅ × = ×
  

∑ ∑

∑ ∫

. (66) 

Since the resultant vector (65) is invariant with 

any reduction pole, this means that changing the 

pole from ( )O in ( ) { }0O 0∈  resultant moment is 

highlighted by the variation law, as follows: 

O 0 O M M MM r R M r dF r a dm′= × + = × = × ⋅∫ ∫ . (67) 

In the above equations Ma  is substituted by (35). 

 

3. PARAMETERS OF HIGHER ORDER 
 

Velocities, as well as the accelerations of 

higher order (39), (40), (46) – (48) can be also 

established by means of the following vectors: 

( ) ( )
{ }{ }

( ) ( )

S

C

u ;v ;w

C j C

r t exp t

r q t ; j k , t r t

χ
χ

χ δ ρ
=

∗

  
 + × ⋅ =    

   
 

 = = → = =   

∑0

1 6

; (68) 

( ) ( ) ( ) ( ) ( )0
u v Cwt J t t t tψψ α β γ ψ=  − −  ⋅  ; (69) 

( ) ( ) [ ]{ } ( )

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ){ } ( )

( )

0

u

0

v u

0

w u v

i j j

t t exp 0 u

t exp u t t v

t exp u t t exp v t t w

q t ; j 1 k 6, t

ψ α

β α

γ α β

ψ ∆ ∗

 = ⋅ ⋅ +
 

+ ⋅  ×  ⋅ +   
 
+ ⋅  ×  ⋅  ×  ⋅    
  = ⋅ = → =   

 

where (68) is identical with (43) / (44), and (69) 

named the orientation vector is written by means 

of expressions: (10), (22), (28), (30) and (31). 

An essential component (30) included in (69) is 

known as angular transfer matrix defined as 

function of set of orientation angles. Considering 

(68) and (69) it observes that they are functions 

of generalized variables (27) – (29). Actually, 

the six generalized variables are the independent 

parameters of position and orientation from (26). 

● Using researches of author from [9] – [13], 

on the time vector functions of position (68) 

and orientation (69), the differentials properties 

compulsory applied in advanced kinematics and 

dynamics have been developed as below follows: 
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( )

( )

m

C C C C C C

m
j j j j j

j

r v a a a r

q q q q q
q

∂ ∂ ∂ ∂ ∂ ∂
= = = = = ≡

∂ ∂ ∂ ∂ ∂
∂

...
& &&

& && &&& &&&&
, (70) 

( )

( )

m

m

j j j j
j

q q q q
q

ψ ψ ε ε ψ∂ ∂ ∂ ∂ ∂
= = = = = ≡

∂ ∂ ∂ ∂
∂

...
& &&

K
& && &&&&

,  (71) 

( )

( )

( )

( )

k
C C C

m

mj j j m

m m

C C

m m

j j

r v rd
q

dt q q q q

a r
m

m m
q q

∗ =

=

− +

  ∂ ∂ ∂∂ 
= = ⋅ =   ∂ ∂ ∂ ∂    

 
∂ ∂ 

= ⋅ = ⋅ ≥ + +
∂ ∂  

∑
6

1

1 1

1 1
, 0

1 1

&

, (72) 

( )

( )

( )

( )

k 6

m

m 1j j j m

m 1 m 1

m m

j j

d
q

dt q q q q

1 1
m 0

m 1 m 1
q q

ψ ω ψ

ε ψ

∗ =

=

− +

  ∂ ∂ ∂ ∂ 
= = ⋅ =   ∂ ∂ ∂ ∂    

 
∂ ∂ 

= ⋅ = ⋅ ≥ + +
∂ ∂  

∑

,

&

, (73) 

( )
( )

( )

( )

m k 1
k 1

C C

k 1 m
j

j

k 1 ! m !r rd

q m k 1 !dt
q

+ −
−

−

 
− ⋅∂ ∂   

= ⋅  ∂ + −   ∂ 

,      (74) 

( )
( )

( )

( )

( )
( )

( )

( )

m k 3
k 1

i
j jk 1 m

j
j

m k 1

jm

j

k 1 ! m !d

q m k 1 !dt
q

k 1 ! m !

m k 1 !
q

ψ ε

ψ

+ −
−

−

+ −

 
− ⋅∂ ∂  ⋅∆ = ⋅ ⋅∆ =  ∂ + −  ∂ 

 
 − ⋅ ∂
 = ⋅ ⋅∆

+ − ∂ 

(75) 

{ }

( ) { }

k 1; k 1;2;3;4;5; ..... ;

m k 1 ; m 2;3;4;5; .....

 ≥ = 
 

≥ + =  
.         (76) 

The symbols (76) highlight time deriving orders. 

Using (69) – (76), the next expressions become: 

( )
( )

( )
( )

( )

( ) ( )

m

k k
C C

C j jm
j jj

j

r t r t
v t q t q t

q
q

∗ ∗= =

= =

∂ ∂
= ⋅ = ⋅

∂
∂

∑ ∑
6 6

1 1

& & ; (77) 

( ) ( ) ( )

( )
( )

( ) ( )
( )

( )

( ) ( )

C C C

m m

k k
C C

j jm m
j j

j j

a t v t r t

r t r t
q t q t

m
q q

∗ ∗
+

= =

= =

 = = =
 
 
 ∂ ∂

= ⋅ + ⋅ ⋅ 
+ ∂ ∂ 

∑ ∑
1

6 6

1 1

1

1

&&&

&& &

; 

( ) ( ) ( ) ( )
( )

i u v Cw

t
t J t t t

t
ψ

ψ
ω α β γ

∂
= − − ⋅ =   ∂

0
  (78) 

( )
( )

( )
( )

( ) ( )

m

k n k n
i i

j j j jm
j jj

j

t t
q t q t

q
q

ψ ψ
∗ ∗= =

= =

 
∂ ∂ 

= ⋅ ∆ ⋅ = ⋅∆ ⋅ 
∂ ∂ 

∑ ∑
1 1

& & ; 

( ) ( )
( )

( )

( ) ( )

( )

( ) ( ) ( )

m

k n
i

i i j jm
j 1

j

m 1
k n

i
j j im

j 1
j

t
t t q t

q

1
q t t

m 1
q

ψ
ε ω

ψ
ψ

∗

∗

=

=

+
=

=

 
∂ = = ⋅∆ ⋅ +

 
∂ 

 
 ∂
 + ⋅ ⋅ ∆ ⋅ =

+ ∂ 

∑

∑

& &&

&&&

;   (79) 

( )

( )
( )

( )
( )

( )

( ) ( )

( )
( )

( ) ( )
( )

( )

i

i i

i

i

m

k 1k 1 k k n
C

C C jk 1 m
j 1

j

m 1

k 1 k 1k n
C

j Ck 1 m
j 1

j

r td
a t v t q t

d t
q

r td 1
q t r t

d t m 1
q

∗

∗

−− =

−
=

+
− +=

−
=

  
∂  = = ⋅  

∂    
 

  ∂  + ⋅ ⋅ =  +
∂    

∑

∑

&&

&

(80) 
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( )

( )
( )

( )

( ) ( )

( )

( ) ( )
( )

( )

m
k 1k 1 k k n

i

i i j jk 1 m
j 1

j

m 1
k 1 k 1k n

i
j j ik 1 m

j 1
j
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t t q t

d t
q

1 d
q t t

m 1 d t
q

ψ
ε ω

ψ
ψ

∗

∗

−− =

−
=

+
− +=

−
=

  
∂  = = ⋅∆ ⋅  

∂   
 

  
∂  + ⋅ ⋅∆ ⋅ =
  + ∂   

∑

∑

&&

&

    (81) 

The expressions (77) and (80) are identical with 

(46) – (49), and they are referring to the linear 

velocity and linear accelerations of higher order, 

corresponding to mass center. The others: (78), 

(79) and (81) identical with (39) and (40) are the 

angular velocities and angular accelerations of 

higher order for rigid solid in general motion. 
 

● Analyzing all input parameters for advanced 

kinematics and dynamics, it results that they are 

functions of generalized variables (27) / (29), as 

well their time derivatives. So, according to 

author researches they can be developed using 

polynomial interpolating functions [4] and [13]. 

It proposes following functions of higher order: 

( )
( )

( )
( )

( )

( )

( )
( )

( )

( )

p 1m p m
p i

ji ji 1

i

p 1 p km p
i 1

ji p jik
k 1i

q 1 q
t p 1 !

q a
t p 1 ! p k !

τ τ
τ

τ τ τ
δ

+−

−

+ −
−

=

 −
= − ⋅ ⋅ + 

⋅ + 
 

− + ⋅ + ⋅ ⋅ ⋅ + − 
∑

; (82) 

 

( ) ( ){ }
( )

p

i i i 1

where p 0 m

m deriving order , m 2, m 2,3,4,5,

0, p 0 ; 1; p 1

j 1 n deg rees of freedom d.o.f .

i 1 s int ervals of motion trajectories

actual time variable

t ( time to each trajectory int erval )

δ

τ
τ τ −

= → 
 − ≥ =
 

= = ≥  
= → − 

 = →
 −
 

= −  

K

; (83) 
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For each interval of trajectory ( )i 1 s= → , number 

of unknowns is ( )m 1+ , and their significance is: 

( )
( )

( )
( )

( )

m

jik ji 1

jik

m

ji 1

a for k 1 m ; and q for i 2 s

where a integration constants, and

q generalized accelerations of m order

−

−

  
= → = →  

  
 

− 
   − 
   

(84) 

The determination the unknowns (84) requires, 

in accordance with [4] – [13], the application of 

the geometrical and kinematical constraints as: 

( )
( )

( )
( )

( )

( )

( )
( )

( )
( )

( )

m p m

0 j0 s js js

2

ji

m p m p

ji ji 1
i

i

q , p 0 m; q , q

q generalized accelerations

q q , p 0 m

continuity conditions

all conditions are applied to each

where i 1 s 1

τ τ

τ ττ

τ

−

− −

+ −
+

   
⇒ = → ⇒  

  
  
 − 
   

   = = →  ⇒      
 
 

= → −  












 
 



(85) 

Finally, the results (82) will be substituted in the 

advanced notions of kinematics and dynamics. 

Remarks: The input expressions and parameters 

of higher order form the three sections of this 

paper are compulsory applied in the definition 

of the dynamic notions of higher order, such as: 

momentum, angular momentum, kinetic energy, 

acceleration energy of higher order. They will be 

included in the dynamics theorems of the current 

and sudden mechanical motion of the bodies. 

 

4. ADVANCED DYNAMICS THEOREMS 

 

     The fundamental theorems, corresponding to 

dynamics of the rigid solid are: motion theorem 

of the mass center (momentum theorem), 

theorem of the angular momentum and theorem 

of the kinetic energy in differential form. These 

are in consonance with scientific literature, for 

example [4], [5] and [13]. Applying the input 

expressions and parameters of higher order, see 

previous sections, the main objective of this 

section consists in a few reformulations of the 

fundamental theorems, in consonance with the 

general motion of the rigid solid, see Fig.2. 

     So, the motion theorem of the mass center is 

characterized by means of the next equation: 

i C i C i CM a M v M r R∗⋅ = ⋅ = ⋅ =&&& ,        (86) 

where R  is resultant vector of active forces (65). 

Substituting the linear acceleration of the mass 

center with (77), the theorem (86) is changed as: 
( )

( )

( )

( )

m m
k

C C
j jm m

j
j j

r r
M q q R

m
q q

∗
+

=

=

 
∂ ∂ ⋅ ⋅ + ⋅ ⋅ =
 +
∂ ∂  

∑
1

6

1

1

1
&& & . (87) 

The theorem of the angular momentum, relative 

to mass center (Euler’s equation) is defined by: 

( )S S S S C

d
I I I I M

d t
ε ω ε ω ω∗ ∗ ∗ ∗ ∗⋅ + ⋅ = ⋅ + × ⋅ = .  (88) 

Substituting angular velocity and acceleration 

with (78) and (79), the theorem (88) is changed: 
 

( )

( )

( )

( )

( )

( )

( )

( )

m m 1
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S j j j jm m
j 1

j j

m m
k 6 k 6

S j p j p Cm m
j 1 p 1

j p

1
I q q

m 1
q q

I q q M

q q

ψ ψ

ψ ψ

∗

∗ ∗

+
=

∗

=

= =
∗ ∗

= =

  
∂ ∂  ⋅ ⋅∆ ⋅ + ⋅ ⋅∆ ⋅ +

  +
∂ ∂   

 
    ∂ ∂    × ⋅ ⋅∆ ⋅∆ ⋅ ⋅ =
    ∂ ∂       

∑

∑∑

&& &

& &

(89) 

( ) ( )( ) ( )( ){ }Cj p j p j p
where 0, q r ; 1, q ψ∆ = ∈ ∈ , (90) 

and C O CM M O C and ρ∗ ′≡ ≡ =, , 0  (see (66)) is the 

resultant moment of active forces, while SI
∗

 is 

inertia tensor axial and centrifugal (55), the two 

parameters are in relation with the mass center. 

The theorem of the kinetic energy in differential 
form is considered the most general theorem of 

dynamics. Its equation of definition is written as: 

( )T T

C i 0 0 i 0 C S

1 1
E M v v M v I

2 2
ω ρ ω ω′= ⋅ ⋅ ⋅ + ⋅ ⋅ × + ⋅ ⋅ ⋅ (91) 

Considering C S SO C and 0 while I Iρ ∗′≡ = ≡, , , the 

kinetic energy is determined with the following: 

T

C C C s

1 1
E M v v I

2 2
ω ω∗= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ,       (92) 

( )

k n
T C

C i C j

j 1 j

k 6
T

S S j j

j 1 j
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dE M a dq

q

I I dq dL
q

ψ
ε ω ω

∗
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=

=

=
∗ ∗

=

 ∂
= ⋅ ⋅ ⋅ + 

∂ 
 

∂ + ⋅ + × ⋅ ⋅ ⋅ ⋅ ∆ ≡ ∂ 

∑

∑

(93) 

 

T T
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k k
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j C j j

j jj j

dE dL R dr M d

r
R dq M dq

q q

ψ

ψ
∗ ∗

∗ ∗

= =
∗ ∗

= =

 ≡ = ⋅ + ⋅
 
 ∂ ∂

⋅ ⋅ + ⋅ ⋅ ⋅∆ 
∂ ∂ 

∑ ∑
6 6

1 1

; (94) 

where (92) is named König’s theorem, (93) is 

differential expression of the kinetic energy, and 

(94) elementary work. Expressions (91) – (94) 

are corresponding to general motion of body. 
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Substituting (70) and (71) in (93) and (94), and 

left member from (89) and (90) in (93), theorem 

of the kinetic energy, under the differential form 

(94) finally this is mathematically reformulated. 

     In the case of the body, free in the Cartesian 

space, then it becomes holonomic body. A few 

conditions are applied on (93) and (94): 

j j

i i

q 0 dq 0 j 1 6

q 0 dq 0 i 1 6 i j

≠ ≠ = → 
 

= = = → ≠ 

, ,

, , ,
.       (95) 

They are referring to independent parameters in 

in the both finite and elementary displacements. 

After a few transformations on the differential 

of the theorem of the kinetic energy it obtains: 

( )

i

6
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i 1 j

6
T

T

C S S j

i 1 j
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R M a

q

M I I 0
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  ∂ − ⋅ ⋅ +   ∂ 
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∂  − ⋅ + × ⋅ ⋅ ⋅∆ =    ∂  

∑

∑

(96) 

According to [3] – [13], expression (96) is 

considered differential generalized principle 

(generalization of the D’Alembert ─ Lagrange 

principle) in analytical dynamics of systems. 

Applying important transformations on (96) 

in consonance with researches of the author and 

considering acceleration energy of first order 

[3] – [13], it obtains the following equations: 

( ) ( )

( )

( )

1 T T
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T T T
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 
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 
 
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(97) 

When C S SO C 0 and I Iρ ∗′≡ = ≡, , , (97) becomes: 

( )

( )

1 T T
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T T T

S S

1 1
E M a a I

2 2

1
I I
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ε ε
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;(98) 
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0
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A Awhere E E j 1 6 k 1

m k 1 2 and k are time deriving orders

 
 = = → =
 
 ≥  + =   

,

,

. 

Therefore, according to [1] – [13], (97)/(98) is 

named acceleration energy of first order and (99) 

generalization of Gibbs – Appell’s equations. 

5. CONCLUSIONS 

 

The currently paper was devoted especially to 

presentation a few essential reformulations and 

new formulations concerning some expressions 

and parameters from advanced kinematics and 

dynamics. They become input expressions 

compulsory included in dynamics equations of 

higher order, corresponding to the current and 

sudden motions in the case of the rigid body. 

These are extended on the multibody systems. 

So, unlike the classical models the author has 

presented in first section of paper reformulations 

and new formulations regarding the independent 

parameters of position and orientation, for any 

rigid body found free in the Cartesian space. In 

the same section is proposes a new general 

expression for the simple rotation matrices. In 

the second section of the paper, they have been 

presented input expressions that define the 

general motion of the body. In the view of this 

matrix exponentials and the time derivatives of 

higher order have been applied, concerning the 

linear and angular accelerations of higher order. 

In the same section were presented the mass and 

inertia properties, as well as the distribution of 

active forces corresponding to general motion. 

In the third section, important differential 

properties have been developed concerning 

position of the mass center and orientation 

vector. They are also used for determine the 

same linear and angular accelerations of higher 

order above mentioned. According to author 

researches, the parameters of advanced 

kinematics have been developed as time 

functions with the polynomial interpolating 

functions of higher order, defined in this section. 

The fourth section was devoted to reformulation 

of the fundamental theorems, in consonance 

with the general motion of the rigid solid. By 

means of a few transformations applied on the 

theorem of the kinetic energy, finally it was 

obtained the differential generalized principle in 

analytical dynamics of systems, as of the 

D’Alembert ─ Lagrange principle. Using the 

researches of the author in last part of this 

section, the expression of definition for the 

acceleration energy of first order corresponding 

to general motion of any rigid solid, and of 

Gibbs – Appell’s equations were presented. 
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Noi abordări asupra noțiunilor din mecanica avansată 
 

Studiul dinamic al mișcărilor curente și rapide ale corpului rigid și în conformitate cu principiile diferențiale specifice 
dinamicii analitice a sistemelor, se bazează, printre altele, pe noțiunile avansate, cum sunt: momentul cinetic, energia 
cinetică, energiile de accelerații de diferite ordine și derivatele absolute în raport cu timpul a acestora de ordin superior. 
Noțiunile avansate sunt dezvoltate în conexiune cu variabilele generalizate, de asemenea, denumite parametrii 
independenți de poziție și orientare corespunzători corpului rigid olonom. Dar, sub aspect mecanic, expresiile de definiție 
ale noțiunilor avansate conțin pe de o parte parametrii cinematici și transformările lor diferențiale corespunzătoare 
mișcării absolute, iar pe de altă parte proprietățile maselor, evidențiate prin masa și tensorii inerțiali, și legea de variație 
generalizată a acestora. Cu ajutorul, cercetărilor autorului în această lucrare se vor prezenta reformulări și formulări noi 
cu privire la expresiile de intrare și parametrii cinematicii și dinamicii avansate. Aceștia devin expresii de intrare în 
ecuațiile dinamicii de ordin superior corespunzătoare mișcărilor curente și rapide ale corpului rigid și sistemelor 
multicorp. În lucrare vor fi de asemenea prezentate reformulări asupra teoremelor fundamentale ale dinamicii, asupra 
principiului diferențial generalizat, precum și o generalizare a ecuațiilor Gibbs – Appell. 
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