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Abstract: In this paper we study the problem of interpolation with Bézier functions, considering different 

conditions regarding the number of interpolation points, the degree of parametric interpolation 

parametric curves and the derivatives of these functions in the common points. The mathematical 

background about Bézier functions is presented, also some essential issues and the interpolation 

conditions that are required. The following three issues are studied and solved: interpolation with a 

second-degree Bézier function passing through three points, interpolation with multiple second-degree 

Bezier functions having the equal first-order derivatives in common points and, finally, interpolation with 

a third-degree Bézier function passing through four points. All deduced mathematical relations were 

programmed in C and various examples were presented in the paper. The work ends with a series of very 

useful conclusions. 
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1. INTRODUCTION  
   

The problem of interpolation has been 
extensively studied, especially when 
polynomials are used. The interpolation with 
Lagrange polynomials is the most known, many 
engineering problems involving this type of 
interpolation [3], [13], [16] .  

In the last fifty years, the use of some special 
functions, discovered by mathematicians and 
engineers, was widely spread, applied in 
computer aided design and implemented in 
actually software used in this domain. 

The so-called Bézier [2] curves are in the 
attention of researchers for many years, 
mentioned in many books and scientific papers 
[4], [5], [6], [9], [10], [12], [14], [16], [17], 
each of which deals with some specific issues. 

In the last years out team has studied many 
problems linked with the computer aided 
geometric design, using the Bézier, B-spline 
and NURBS functions. 

In this paper our aim is to succeed in the 
study of interpolation with Bézier functions that 
accomplished some specified conditions, as 
concerns the number of interpolation points, the 

degree of functions and the equality of first-
degree derivatives in common points. 

Further on it will be present a short 
mathematical background about the Bézier 
functions and the three specific issues that we 
have studied and solved. 
  
2. BERNSTEIN POLINOMIALS AND 
BÉZIER CURVES 
 

The Bernstein polynomials have the 
following expression [1], [2], [3], [4], [5]: 
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and are used as a component part in Bézier 
functions:  
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where (x0P, y0P),  (x1P, y1P), …, (xkP, ykP), …,  
(xn-1,P, yn-1,P), (xnP, ynP) are the coordinates of 
the polygonal line vertices, named knots or 
control points. The polygonal line joining these 
points is named the control polygon. 

Because the Bernstein polynomials Φ0,n(t)  
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and Φn,n(t) satisfy the conditions:  

1)1()0( ,,0 =Φ=Φ nnn  

it results: 
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Therefore the Bézier curve starts at first point 
P0 of the control polygon and ends in the last 
point Pn , without necessarily containing other 
points of the control polygon. 

Formula (2) may be written as follows: 
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Calculating the first derivatives in the points 
that correspond to values t = 0 and t = 1 of the 
parameter t, it results: 
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3. SECOND-DEGREE BÉZIER 
FUNCTIONS THAT INTERPOLATE 
THREE POINTS 
 

When the number of points is three and 
consequently the degree of Bézier functions is 
two, formula (2) may be written as: 
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The positions of points 00 )0( PBB == and 

22 )1( PBB ==  are known 

PBBPBB yyyxxxt 0000 )0(,)0(,0 =====  

PBBPBB yyyxxxt 2222 )1(,)1(,1 =====  

and a supplementary condition for the Bézier 
curve is added: it has to contain the third fixed 
point, noted B1 with the coordinates [x1B , y1B ]. 
Therefore, we have to find the position of the 
third (intermediate point) of the control 

polygon, P0 – P1 – P2 , thus the corresponding 
Bézier curve passes through the point B1. The 
coordinates of vertex P1 will be computed from 
the following linear equations:  
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The positions of the Bézier curve points in 
the plan Oxy depend on the positions of the 
three vertices of the control polygon and on the 
parameter t value, belonging to the interval 
[0;1]. The parameter value is noted with t1 . 
 It is easy to write the expressions of the 
unknown coordinates of point P1 :  

)1(2

)1(

11

2
12

2
101

1
tt

txtxx
x

BBB

P
−

−−−
=  

)1(2

)1(

11

2
12

2
101

1
tt

tytyy
y

BBB

P
−

−−−
=    (8) 

We may conclude that there are different 
Bézier functions that interpolate points 00 PB ≡ , 
B1 and  22 PB ≡ , because we may consider any 
value for parameter t, the only condition being 
0<t<1.  
 In figure 1 there are four second-degree 
Bézier curves, which achieve the desired 
interpolation, passing through three points, 
having different shapes. The difference is the 
value assigned to t1 parameter in each case: 0.2, 
0.4, 0.6 and 0.8 . It is obvious that in each case 
the point P1 (the intermediate point of control 
polygon) is located in different positions.  
 

 

Fig. 1.  Four Bézier curves of second-degree that 
interpolate three points 
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4. MULTIPLE SECOND-DEGREE 
BÉZIER FUNCTIONS INTERPOLATING 
POINTS IN PLANE, HAVING EQUAL 
FIRST-ORDER DERIVATIVES IN 
COMMON POINTS 
 

A number of n+1 points in the plan is 
considered, noted with P0 , P2 , . . . , P2n-2 , P2n . 
If between each pair of points:  P0 and P2 , P2 
and P4 , P4 and P6 , . . . , P2n-4 and P2n-2 , P2n-2 
and P2n  there are n second-degree Bézier 
curves with  n-1  common points, the 
interpolation problem is solved. The positions 
of intermediate points of the control polygons 
with three vertices may be arbitrarily 
established and, as a consequence, in each of 
the n-1 common points the Bézier curves have 
different tangents. If our task is to obtain a 
Hermite type interpolation, it is necessary to 
impose the equality of first derivatives on both 
sides of common points, therefore the tangents 
to the adjacent curves have to fit. Imposing 
these conditions, we may obtain the unknown 
positions of intermediate points and the control 
polygons will ensure the existence of Bézier 
curves having equal first derivatives in 
common points. 

Two adjacent Bézier curves have the 
following expressions: 
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Imposing the existence of the common tangent, 
it results: 
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By combining (9), (10) and (11) we conclude:  
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Knots P2k-1 and  P2k+1  are placed in symmetric 
positions with respect to the knot P2k (common 
point of interpolation).  

 There are n intermediate points of the 
control polygons: P1 , P3 , … , P2n-3 and P2n-1  
and the number of conditions is n-1. The 
problem will be solved by considering imposed 
values to the coordinates of one point, e.g. of 
point P1 . 
 Relations (13) will be used to compute the 
coordinates of points P3, … , P2n-3 and P2n-1. 
The above explained procedure was used to 
perform the interpolations presented in figures 
2, 3, 4 and 5.    
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Fig. 2. Imposed coordinates of  P1 [20 ; 20] 

 

 

Fig. 3. Imposed coordinates of  P1 [80 ; 20] 
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Fig. 4. Imposed coordinates of P1 [20 ; 80] 

 

 

Fig. 5. Imposed coordinates of P1 [80 ; 80] 

 
 

 
Fig. 6. Superposed diagrams from figures 2 to 5 

 
The number of points to interpolate was six 

and the shape of diagrams differs because the 
position of point P1 is changed from figure to 
figure. One may observe the existence of 

common tangents in the points 2, 4, 6 and 8, the 
Hermite type interpolation being performed. 

 

 

Fig. 7. Other four different positions of point P1 
 
In figure 6 are shown the superposed 

diagrams, corresponding to figures 2, 3, 4 and 
5. In figure 7 other four diagrams are presented, 
obtained considering other four different 
positions of point P1.  
 
5. INTERPOLATION USING THIRD- 
DEGREE BÉZIER FUNCTIONS THAT 
PASS THROUGH FOUR POINTS IN 
PLAN 
 

If the degree of Bézier function is three, the 
control polygon has four knots (vertices), the first 
and the last coincide with the first point of the 
Bézier curve (for t=0) and with the final point 
(obtained for t=1).  
 The interpolation problem will be solved 
considering that the Bezier curve has to contain 
two specified points in the plan, denoted by B1 
and B2, with known coordinates: [x1B ,y1B ] 
respectively [ x2B , y2B].  
 In this case, formula (2) becomes: 
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and developing we obtain: 
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After imposing the conditions (the curve 
must pass through two points B2 and B3), the 
following two relations will result, involving 
abscissas:   
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and other two for ordinates: 
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Two systems of linear equations were 
obtained, each of them having two unknowns: 
the coordinates of the control polygon vertices 
P1 and P2 : 
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Both systems are compatible, the unknowns 
can be calculated, because the discriminant of 
the system of equations is different from zero, it 
being positive:  

0)tt()t1()t1(tt9 122121 >−−−=∆ . 

 As  we notice, the values of parameters  t1 
and  t2  intervene in the expressions of knots P1 
and P2 coordinates, thus the shapes of the 
Bézier curves (determined by the control 
polygon) are different, depending on the 
considered values for  t1  and  t2 , but all of 
them have the property to interpolate the four 
imposed points. 

In figures 8 to 13 six Bézier interpolation 
curves are shown, that pass through four given 
points of coordinates: B0[50; 80], B1[80; 120], 
B2[150; 145] and B3[300; 50], having different 
shapes, depending on the assumed values for 
parameters t1  and t2. 

 
Fig. 8. The coordinates of vertices P1 [86.11;158.61] and 

P2 [197.22;184.72] 
 

 
Fig. 9. The coordinates of vertices P1 [-19.44;56.11] and 

P2 [202.78;261.39] 

 
Fig. 10. The coordinates of vertices P1[88.89;16.80]  and 

P2 [24.07;285.14] 
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Fig.11. The coordinates of vertices P1 [223.45;288.46] 
and P2 [-66.28;237.16] 

 
Fig.12. The coordinates of vertices  P1 [559.26;-369.81] 

and P2 [-345.06;487.47] 

 
Fig.13. The coordinates of vertices P1 [147.22;-3.70]  

and P2 [-47.22;310.20] 
 

In figure 14 are shown seven interpolation 
Bézier functions of third-degree that pass 
through four points. Four of these curves are 
those presented in figures 8 to 11.   

 
Fig.14. Superposed diagrams corresponding to seven 
interpolation Bézier functions, obtained for different 

values of parameters t1  and  t2 

 
6. CONCLUSIONS  
 

The purpose of this paper was to present 
some important problems regarding the 
interpolation with low degrees Bézier curves.   

Despite the fact that problems of 
interpolation with Bézier, B-spline and NURBS 
curves have been extensively studied during the 
last time, there are still some particular 
problems - we dare to see of great interest in 
this field – which have not been studied at all or 
have been insufficiently studied. 

Three important issues have been in our 
attention:  

- the interpolation with a single Bézier curve 
of second-degree, considering three points of 
interpolation; 

- the interpolation with multiple adjacent 
Bézier curves of second-degree, having the first 
derivatives equal in the common points; 

- the interpolation with a single third-degree 
Bézier curve that interpolates four points. 

To solve these issues, all necessary 
mathematical aspects have been elucidated. The 
deduced formulas were programmed in C 
language [11], [15] and many examples are 
presented in the paper for each case.   

Some important aspects have to be 
mentioned as a conclusion of this study. If the 
classical polynomial interpolation with 
Lagrange or Hermite polynomials is used, we 
obtain a single polynomial that satisfy the 
imposed conditions, to pass through all points 
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and supplementary, in case of Hermite 
interpolation, to have imposed values of first 
derivatives in the interpolating points.  

In the case of interpolation with Bézier 
functions, the situation is changed: we may 
obtain different solutions (different curves) that 
fulfill the imposed conditions. The examples 
presented above - and one may examine figures 
1, 6, 7 and 14 - show that different curves pass 
through the imposed points and, in some cases, 
also satisfy supplementary conditions about the 
derivative values in interpolating points or in 
the common interpolating points, when 
adjacent curves exist.     

In each studied case the explanations are the 
same: the number of condition to be imposed is 
less than the number of unknowns. 

The supplementary conditions may be 
imposed in different manners: by choosing 
values of parameters defining the positions of 
points on the Bézier curves, by choosing 
positions for some points of control polygon, 
etc. 

Obviously, the possibility to obtain multiple 
solutions for the interpolation problem is an 
advantage when we choose a desired 
interpolation curve.   
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Asupra unor soluţii multiple de interpolare cu polinoame Bézier de gradul doi şi trei 

 
Rezumat: În această lucrare este studiată problema interpolării cu funcţii Bézier, considerând diferite condiţii privind 
numărul punctelor de interpolare, gradul curbelor parametrice de interpolare precum şi derivatele acestor funcţii în 
punctele comune. 
Sunt prezentate câteva probleme esenţiale privind funcţiile Bézier, precum şi condiţiile de interpolare care se impun. 
Sunt studiate şi rezolvate următoarele trei probleme: interpolarea cu o funcţie Bézier de gradul doi care trece prin trei 
puncte, interpolarea cu mai multe funcţii Bézier de gradul doi, successive, în punctele comune având tangente identice 
şi interpolarea cu funcţii Bézier de gradul trei care trec prin patru puncte. 
Toate relaţiile matematice au fost programate în cadrul unui program C, pe baza căruia au fost realizate o serie de 
exemple care sunt prezentate în lucrare. 
 Lucrarea se încheie cu o serie de concluzii foarte utile. 
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