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Abstract: The Bézier, B-spline and NURBS curves and surfaces were extensively studied in the literature 

and used in the shapes design of different products, initially for cars. From the mathematical point of 

view, in most cases the problems linked to interpolations and approximations with curves and surfaces 

have been solved.   

Our research team has studied and solved the spline interpolation problem using third-degree Bézier 

curves between the interpolation points. An efficient algorithm has been set up following the mathematical 

model which solves the problem. It has been programmed in the C language and used to solve different 

numerical examples, with results illustrated by diagrams.  

It can be observed that there exist multiple variants of interpolation curves due to the imposed 

interpolation problem specificity: there exist more unknowns than equations (possible conditions to be 

imposed), that’s why one has to start with some initial values for a pair of selected unknowns.  
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1. INTRODUCTION  
   

For more than two hundred years many 

mathematicians have focused on the 

interpolation problem using polynomials, a 

problem of great theoretical and practical 

interest [5], [19], [25].  

Lagrange, Newton, Gauss, Stirling, Bessel 

discovered different numerical procedures to 

establish the interpolation polynomials 

formulas, the interpolating points being distinct 

and having abscissas arranged in ascending 

order. 

If the points are disposed anyhow in the plan 

and the interpolating curve has to pass from a 

point to another in a precise order, one has to 

use parametric defined curves - the best known 

being Bézier, B-spline and NURBS curves. 

Nowadays these curves are widely used in the 

programs for the shape design of different 

object, products, especially in the car industry 

[1], [6], [7], [8], [9], [10], [13], [20].     

When we deal with polynomials to perform 

interpolation, the great number of points 

implies a big value of polynomial degrees: if 

the number of points is n+1, the degree is n; 

involving much time to perform the polynomial 

values computing.  To avoid this problem, the 

solution is to use spline functions, of low 

degree, usually of third degree, in each interval 

between two successive points. Also, we have 

to mention that a condition is necessary: in each 

common point of two spline functions the 

values of the first two derivatives have to be 

equal. 

In this paper our aim is to study interpolation 

with spline functions and to find an algorithm 

that allows us to construct the mathematical 

model for interpolating points in plan with 

spline type Bézier functions of third degree, so 

that equality is achieved for the first two 

derivatives in common points. 

As will be shown as follows, this algorithm 

has been found and transposed into a program 

written in the C programming language. Using 

this original computer program, several 

examples have been obtained that illustrate the 

issue.  

In this case, it is not a single solution to a 

specified problem because the number of 
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conditions (the number of equations) is less 

than the number of unknowns. 

2. BERNSTEIN POLYNOMIALS, BÉZIER 
CURVES AND SMOOTHNESS 
CONDITIONS 
 

Bernstein polynomials of degree n have the 

following expression, similar with probability 

density function in the case of binomial 

distribution: 

]1;0[

,,...,2,1,0,)1()(,

∈

=−=Φ
−

t

nkttCt
kknk

nnk (1) 

For the first time, in 1913 [3], Serghei N. 

Bernstein (1880-1968) has used these 

polynomials, now known as Bernstein 

polynomials, to prove famous Weierstrass 

theorem about the approximation of functions 

with polynomials. 

We have the following known properties and 

relations regarding these polynomials [2], [4], 

[16], [19], [25]: 
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The Bernstein polynomial may be written as 

a linear combination of power functions: 
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also existing the relation that links the power 

function with Bernstein polynomials, as follows 

(see [7] pp. 64, [20] for more details): 
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Based on Bernstein polynomials, during 

1960-1970, Pierre Bézier (1910-1999,) working 

at Renault company, has established the 

expression of functions that were used in 

computer aided design of cars shapes [4]. He was 

the first researcher that tried and succeeded to 

establish links between the shape of an object 

and the mathematical model of some curves 

or/and surfaces that fit to this shape.  

A number of n+1 points (named knots or 

control points) are considered in the Oxy plan, 

with known coordinates: (x0P, y0P),  (x1P, y1P), 

…, (xkP, ykP), …,  (xn-1,P, yn-1,P), (xnP, ynP) . The 

polygonal line linking these points is called a 

control polygon. 

The column vectors containing the control 

points coordinates are denoted by:  
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The Bézier curve coordinates are given by: 

∑
=

∈Φ=

n

k

knk tPttB
0

, ]1,0[,)()(    (4) 

or 

,)1(
)(

)(

0

∑
=

−









−=







 n

k kP

kPknkk

n

B

B

y

x
ttC

ty

tx
 (5) 

the coordinates values for each point of the 

Bézier curve depending on values of the n+1 

Bernstein polynomials of degree n  multiplied 

with the values of control points coordinates. 

 Because the Bernstein polynomials Φ0,n(t)  

and Φn,n(t) satisfy the conditions 

1)1()0( ,,0 =Φ=Φ nnn
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therefore the Bézier curve starts in the first point 

P0  of the control polygon and ends in the last 

point Pn , not necessarily containing other points 

of the control polygon. 

Formula (4) may be written as follows: 
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By calculating the first two derivatives in 

points that correspond to values t=0 and t=1 of 

the parameter t , it results: 
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Expressions (7) may be interpreted in the 

following manner: the tangents to the Bézier 

curves in the points defined for t=0 and t=1 

overlap with the first and the last control 

polygon sides. 

If the interpolation is performed with a 

sequence of Bézier curves, each curve having 

the last point in the same position as the first 

point of the next curve, we can impose some 

smoothness conditions, demanding the equality 

of first two derivatives of the functions in the 

common points.     

 In this case, the following conditions have 

to be accomplished: 
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the desired interpolation being spline type. Here 

are some pointers to the literature: [8], [10], 

[22], [25], [26]  a. o. 

3. INTERPOLATION WITH SUCCESSIVE 
BÉZIER FUNCTIONS OF THIRD 
DEGREE, WITH EQUAL FIRST TWO 
DERIVATIVES IN COMMON POINTS 
 

According to relation (3), if the number of 

control points is  n+1, the degree of polynomials 

composing the  Bézier function is  n, like in the 

case of Lagrange n degree interpolation 

polynomial that passes through n+1 points. 

We can avoid the use of high degree 

interpolation polynomials, considering in each 

interval a third degree polynomial, so called 

spline polynomial, [14], [15], [21], two such 

adjacent polynomials having same values for the 

first two derivatives in common points.   

If the degree of Bézier spline functions is 

three, it results that each control polygon must 

have four control points and obviously the first 

and the last points belong to the interpolation 

points. In the common points are located the 

fourth points of one control polygon and the first 

point of the next control polygon. 

 
Points of control              Vertexes of auxiliary                                   Bézier functions  

                    polygon                          control polygons                                       of interpolation 
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The expressions of third-degree Bézier 

interpolation functions are: 
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and the following conditions must imposed: 
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in order that those functions to be of spline type. 

Starting from expression (9) and based on the 

equality of the first order derivatives, one may 

write: 
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therefore it results that the points belong to the 

same line and the point Q3k  is in the middle of 

segment Q3k-1 Q3k+1 .  

 Equalizing the values of the second 

derivatives in both sides of point Q3k , according 

to  expression (10): 
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In this case the interpolation points (with 

known coordinates) are  Q0 , Q3 , Q6 , . . . , Q3k , 

Q3k+1 , . . . , Q3n-3 , Q3n , for each of them the 

smoothness conditions have to be accomplished. 

These points are the first and the last vertices of 

four sided control polygons.  

The main step in solving the imposed 

interpolation problem is the computing of the 

intermediate control points  Q1 , Q2 , Q4 , Q5 , . . . 

, Q3k+1 , Q3k+2 , . . ., Q3n-2 , Q3n-1 coordinates, of 

each four sided polygon.  

 By imposing two conditions (equality of first 

two derivatives values) for n-1 times (for each of 

the n-1 points) it will result 2n-2 relations with 

2n unknowns.  

Hence, it is necessary to impose two 

supplementary conditions about two points of the 

control polygons, e. g. for points Q1  şi  Q3n-1  

considered with known coordinates. 

The following simultaneous equations will 

result: 
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This system of equations may be written in 

the matrix form:  AX=B. 
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Noticing the values of matrix elements, we 

may write the following relations:  
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After the numerical solving of the system AX=B 

(the partial pivoting method was used), the 

unknown values will result, as elements of the 

column vector B.  

 The coordinates of the control polynomial 

vertices are obtained in the following way: 
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The coordinates of all intermediate points of 

auxiliary polygons being known at this moment, 

it is possible to calculate the coordinates of all 

points of the third-degree Bézier interpolating 

curves. 

Based on this procedure, a C language 

computer program was written, [17], [24] used 

for the computation of the examples that follows.  

 

4. NUMERICAL EXAMPLES 
 

Figures 1 to 6 contain six diagrams obtained 

on the base of the previous presented relations.  

In each figure the points denoted with 3, 6 and 9 

are common for two successive third-degree 

Bézier spline functions. The total number of 

interpolation point is five.  
 

 

Fig. 1. Coordinates of  P1 [15;95] and P11 [190;150] 

 
Fig. 2. Coordinates of  P1 [-20;170] and P11 [290;90] 

The shapes of the diagrams differ from figure to 

figure because the coordinates of points no. 1 and 

11 have different values. These different values 

are specified for each diagram, being marked by 

a rectangle. 

 

Fig. 3. Coordinates of  P1 [15 ;100] and P11 [450;82.5] 

 

 

Fig. 4. Coordinates of  P1 [15;95] and P11 [450;82.5] 
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Fig. 5. Coordinates of  P1 [15;95] and P11 [290;90] 

Figure 7 presents five superposed diagrams. 

All diagrams fulfil the imposed conditions for 

being Bézier spline interpolation functions of 

third degree - contain the five interpolation 

points and in three of them (points 3, 6 and 9) 

the condition of smoothness is accomplished. 
 

 

Fig. 6. Coordinates of  P1 [15;95] and P11 [335;52.5] 

 
Fig. 7. Five superposed diagrams 

 

 

Fig. 8. Coordinates of  P1 [-20;80] and P14 [320;10] 

The diagrams in figures 8 and 9 were also 

obtained with our original calculation algorithm 

transposed in a program by using the C 

programming language. They contain Bézier 

spline interpolating third-degree functions 

passing through six interpolating points. 

 

 
 

Fig. 9. Coordinates of  P1 [200;80] and P14 [320;10] 

 

5. CONCLUSIONS  
 

The focus of our investigations lies in the 

solving of a useful problem regarding the spline 

type interpolation with third-degree Bézier 

functions. The equality of the first two 

derivatives in the common points of 

interpolation is ensured. 

It is stated that in these cases we may obtain 

multiple solutions that accomplished the 

imposed conditions.  
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 The developed algorithm is general, very 

efficient, and it was tested for many situations, 

being transposed in a C language computer 

program. 

The multitude of numerical examples with 

which we have worked, some of them 

presented in this paper, allowed us to test the 

correctness and efficiency of the calculation 

procedure. 
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 Interpolare spline cu funcţii Bézier de gradul trei 
 
Rezumat: Curbele Bézier , B-spline şi NURBS utilizate în cadrul proiectării asistate a formelor sunt în atenţia unui 

număr mare de cercetători, din punct de vedere matematic fiind utilizate atât în probleme de interpolare cât şi de 

aproximare. Colectivul nostru a studiat şi soluţionat problema interpolării de tip spline utilizând curbe Bézier de gradul 

trei între punctele de interpolare. A fost stabilit un algoritm pentru formarea elementelor modelului matematic de 

rezolvare, foarte eficient, care a fost programat în cadrul unui program C, cu care s-au realizat o serie de exemplificări 

ale procedeului găsit. Diagramele prezentate arată că există mai multe variante de curbe de interpolare care îndeplinesc 

condiţiile impuse, deoarece numărul acestora este mai mic decât cel al necunoscutelor.   
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