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Abstract: The Bézier, B-spline and NURBS curves and surfaces were extensively studied in the literature
and used in the shapes design of different products, initially for cars. From the mathematical point of
view, in most cases the problems linked to interpolations and approximations with curves and surfaces

have been solved.

Our research team has studied and solved the spline interpolation problem using third-degree Bézier
curves between the interpolation points. An efficient algorithm has been set up following the mathematical
model which solves the problem. It has been programmed in the C language and used to solve different
numerical examples, with results illustrated by diagrams.

It can be observed that there exist multiple variants of interpolation curves due to the imposed
interpolation problem specificity: there exist more unknowns than equations (possible conditions to be
imposed), that’s why one has to start with some initial values for a pair of selected unknowns.

Key words: interpolation, Bernstein polynomials, Bézier curves, smoothness conditions, spline functions

1. INTRODUCTION

For more than two hundred years many
mathematicians have  focused on the
interpolation problem using polynomials, a
problem of great theoretical and practical
interest [5], [19], [25].

Lagrange, Newton, Gauss, Stirling, Bessel
discovered different numerical procedures to
establish  the interpolation  polynomials
formulas, the interpolating points being distinct
and having abscissas arranged in ascending
order.

If the points are disposed anyhow in the plan
and the interpolating curve has to pass from a
point to another in a precise order, one has to
use parametric defined curves - the best known
being Bézier, B-spline and NURBS curves.
Nowadays these curves are widely used in the
programs for the shape design of different
object, products, especially in the car industry
(11, [6], [71, (8], [9], [101, [13], [20].

When we deal with polynomials to perform
interpolation, the great number of points
implies a big value of polynomial degrees: if

the number of points is n+1, the degree is n;
involving much time to perform the polynomial
values computing. To avoid this problem, the
solution is to use spline functions, of low
degree, usually of third degree, in each interval
between two successive points. Also, we have
to mention that a condition is necessary: in each
common point of two spline functions the
values of the first two derivatives have to be
equal.

In this paper our aim is to study interpolation
with spline functions and to find an algorithm
that allows us to construct the mathematical
model for interpolating points in plan with
spline type Bézier functions of third degree, so
that equality is achieved for the first two
derivatives in common points.

As will be shown as follows, this algorithm
has been found and transposed into a program
written in the C programming language. Using
this original computer program, several
examples have been obtained that illustrate the
issue.

In this case, it is not a single solution to a
specified problem because the number of
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conditions (the number of equations) is less
than the number of unknowns.

2. BERNSTEIN POLYNOMIALS, BEZIER
CURVES AND SMOOTHNESS
CONDITIONS

Bernstein polynomials of degree n have the
following expression, similar with probability
density function in the case of binomial
distribution:

@, () =Cy(1-1)"* 1", k=0,1,2,....n,
te[0;1]
For the first time, in 1913 [3], Serghei N.

)

Bernstein  (1880-1968) has used these
polynomials, now known as Bernstein
polynomials, to prove famous Weierstrass

theorem about the approximation of functions
with polynomials.

We have the following known properties and
relations regarding these polynomials [2], [4],
[16], [19], [25]:
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(recurrence formula)
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The Bernstein polynomial may be written as
a linear combination of power functions:

., (=) (D C]ch
j=k
also existing the relation that links the power

function with Bernstein polynomials, as follows
(see [7] pp. 64, [20] for more details):
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Based on Bernstein polynomials, during
1960-1970, Pierre Bézier (1910-1999,) working
at Renault company, has established the
expression of functions that were used in
computer aided design of cars shapes [4]. He was
the first researcher that tried and succeeded to
establish links between the shape of an object
and the mathematical model of some curves

or/and surfaces that fit to this shape.

A number of n+l points (named knots or
control points) are considered in the Oxy plan,
with known coordinates: (xop, yop), (X1pP, y1p),
.oy (XkP, YKP), ..., (Xn-LP, yn-1,P), (XnP, ynP) . The
polygonal line linking these points is called a
control polygon.

The column vectors containing the control
points coordinates are denoted by:

P, = |:xop}’ P = {xw}

yOP ylP (3)
f)k _ |:ka:|’ .... , Pn — |:an:|

ykP ynP

The Bézier curve coordinates are given by:
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or
xp(1) Ok Lk n-k | Xkp
=» Cit"(1-t N ®))
[)’B(I)} kz=(:) ( . |:ykP:|

the coordinates values for each point of the
Bézier curve depending on values of the n+1
Bernstein polynomials of degree n  multiplied
with the values of control points coordinates.

Because the Bernstein polynomials @Pon(t)
and Dnn(t) satisfy the conditions
®,,0)=, , (1) =1,itresults:
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therefore the Bézier curve starts in the first point
Po of the control polygon and ends in the last
point Pn , not necessarily containing other points
of the control polygon.

Formula (4) may be written as follows:

B(1=Y @, (1) P, =

=C’(1-1)"P+C.(1=0)""t P+...+

(0)
+C7' - P +C't" P,

By calculating the first two derivatives in
points that correspond to values t=0 and t=1 of
the parameter t , it results:

B©O) =n(R-F,, BMO)=n(P,-P_) ()



B’ (0)=n(n-1)P)—2n(n-1)P,+n(n-1)P,
B”()=n(n-1)P, ,—2n(n-1)P,_  +n(n-1)P,
(®)

Expressions (7) may be interpreted in the
following manner: the tangents to the Bézier
curves in the points defined for t=0 and t=1
overlap with the first and the last control
polygon sides.

If the interpolation is performed with a
sequence of Bézier curves, each curve having
the last point in the same position as the first
point of the next curve, we can impose some
smoothness conditions, demanding the equality
of first two derivatives of the functions in the
common points.

In this case, the following conditions have
to be accomplished:

mU, -U, )=n(V,~V,) 9)
m(m-1)U, ,-2m(m-1)U, +m(m-1)U, =
=n(n-1)V,-2n(n-1)V,+n(n-1)V, 10)
the desired interpolation being spline type. Here

are some pointers to the literature: [8], [10],
[22], [25], [26] a. o.

Points of control Vertexes of auxiliary
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3. INTERPOLATION WITH SUCCESSIVE
BEZIER FUNCTIONS OF THIRD
DEGREE, WITH EQUAL FIRST TWO
DERIVATIVES IN COMMON POINTS

According to relation (3), if the number of
control points is n+1, the degree of polynomials
composing the Bézier function is n, like in the
case of Lagrange n degree interpolation
polynomial that passes through n+1 points.

We can avoid the use of high degree
interpolation polynomials, considering in each
interval a third degree polynomial, so called
spline polynomial, [14], [15], [21], two such
adjacent polynomials having same values for the
first two derivatives in common points.

If the degree of Bézier spline functions is
three, it results that each control polygon must
have four control points and obviously the first
and the last points belong to the interpolation
points. In the common points are located the
fourth points of one control polygon and the first
point of the next control polygon.

Bézier functions

polygon control polygons of interpolation

PO~P1’ QOEP()’ Ql’ Qz, Q3 SO,I(t)

Pl ~ PZ’ Q3’ Q4’ QS’ Qé Sl,Z(t)

B~ B Quss Onns Qs O S (1)

B~ Ps O Osiss Dsirs Dias Syt (1)

F_~P, Os3r Qyas Gsys 05, =P, Sy (1)

d*s t d*s t
The expressions of third-degree Bézier "+12"() = L;‘() ~
interpolation functions are: dt (r=1) drt (1=0)

S i @=(1-1)’ 0, +3(1-1)*1 Q;,,, +
+3(1-1)1Qyr +12 Qs s» k=0,n-1;
te[0;1]
and the following conditions must imposed:
Seaix (D=8, 44, (0);

dSk—l,k(t) _ dSk,kJrl(t)
dt (r=1) dt

(1=0)’

in order that those functions to be of spline type.

Starting from expression (9) and based on the
equality of the first order derivatives, one may
write:

3005, =051 -1)=3(Q5 01— D5 )5
0y, =3(05 1 +05, 1), k=1,2,...,n—1
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therefore it results that the points belong to the
same line and the point Q3k is in the middle of
segment Q3k-1 Q3k+1 .

Equalizing the values of the second
derivatives in both sides of point Q3k , according
to expression (10):

Q3k—2 _2Q3k—1 +Q3k =Q3k _2Q3K+1 +Q3k+2 >
k=1,2,....,n—1

In this case the interpolation points (with
known coordinates) are Qo, Q3, Qs , ..., Q3x,
Q3k+1 , . . ., Q3n3, Qsn, for each of them the
smoothness conditions have to be accomplished.
These points are the first and the last vertices of
four sided control polygons.

The main step in solving the imposed
interpolation problem is the computing of the
intermediate control points Q1,Q2,Q4,Qs, . ..
, Q3ke1 , Q3ke2, . . ., Q3n2, Q3na coordinates, of
each four sided polygon.

By imposing two conditions (equality of first
two derivatives values) for n-1 times (for each of
the n-1 points) it will result 2n-2 relations with
2n unknowns.

Hence, it is necessary to impose two
supplementary conditions about two points of the

(-2 2 -1 0 .. 0 0 O .. O
1 1 0 0 0 0 0 0
0 1 -2 2 0 0 0 0
0 0 1 1 0 0 O 0
0 0 0 -2 2 -1 0

0 0 1 1 0 0
0 0 0 O 0 1 -2 ... 0
0 0 0 O 0 0 0 -2
0 0 0 O 0 0 O 1
0 0 0 O 0 0 0 0
0 0 0 0 0 0 O 0

Noticing the values of matrix elements, we
may write the following relations:

control polygons, e. g. for points Q1 si Q3n1
considered with known coordinates.
The following simultaneous equations will

result:

-20,+20,-0s=-0,

Q2+Q4=2Q3
0,-20,+20,-0,=0
Q5+Q7=2Q6
0,-20,+20,,-0,:=0
Oy +0,0=20,

Qs2=205,+205,,,—03,» =0
Qs 1+ 05, =205

3y

Q3,7 105,5=20;, ¢
Qs 5—205, ,+20;, ,=0;,
Qs s t05,,=20;, 4

This system of equations may be written in
the matrix form: AX=B.

0 0 O o, -0,

0 0 O 0, 20,

0 0 0 0, 0

0 0 0 0, 20,

0 0 0 Oy 0
0 0 Q3k+l = 2Q3k

0 0 0 Y90 0

2 -10 05, 0

1 O 0 Q3n—5 2Q3n—6

1 -2 2 Q3n—4 Q3n_1

o 11 Jen-2)x@n-2) L Qs Jan-2 L 20,5 i
ai+1,i:1’ i=2,3,4,...,2n-2
ajqj=_2’ aj+1,j+l:1’ aj,j+1:2, (12)
ajqj+2=_1’ j=1’3’5’---’2n_1

(2n-2)



X =051 X100 =05045

(13)
k=1,2,3,...,.n—1
B =-0,, B,,,=0;,, , (14)
B, =20,,,, k=2,4,6,...,2n-2

After the numerical solving of the system AX=B
(the partial pivoting method was used), the
unknown values will result, as elements of the
column vector B.

The coordinates of the control polynomial
vertices are obtained in the following way:

Qsin1=Bi1s Os00 =By,
k=2.,4,6,....2n—-2

(15)

The coordinates of all intermediate points of
auxiliary polygons being known at this moment,
it is possible to calculate the coordinates of all
points of the third-degree Bézier interpolating
curves.

Based on this procedure, a C language
computer program was written, [17], [24] used
for the computation of the examples that follows.

4. NUMERICAL EXAMPLES

Figures 1 to 6 contain six diagrams obtained
on the base of the previous presented relations.
In each figure the points denoted with 3, 6 and 9
are common for two successive third-degree
Bézier spline functions. The total number of
interpolation point is five.
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Fig. 1. Coordinates of P1[15;95] and P11 [190;150]
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Fig. 2. Coordinates of P1[-203170] and P11 [2903;90]
The shapes of the diagrams differ from figure to
figure because the coordinates of points no. 1 and
11 have different values. These different values
are specified for each diagram, being marked by
arectangle.
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Fig. 3. Coordinates of Py [15 ;100] and Py; [450;82.5]
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Fig. 4. Coordinates of P1[15;95] and P11 [450;82.5]
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Fig. 5. Coordinates of P1[15;95] and P11 [290;90]
Figure 7 presents five superposed diagrams.
All diagrams fulfil the imposed conditions for
being Bézier spline interpolation functions of
third degree - contain the five interpolation
points and in three of them (points 3, 6 and 9)
the condition of smoothness is accomplished.
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Fig. 6. Coordinates of P1[15;95] and P11 [335;52.5]
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Fig. 7. Five superposed diagrams
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Fig. 8. Coordinates of P1[-20;80] and P14 [320;10]

The diagrams in figures 8 and 9 were also
obtained with our original calculation algorithm
transposed in a program by using the C
programming language. They contain Bézier
spline interpolating third-degree functions
passing through six interpolating points.
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Fig. 9. Coordinates of P1[200;80] and P14 [320;10]

S. CONCLUSIONS

The focus of our investigations lies in the
solving of a useful problem regarding the spline
type interpolation with third-degree Bézier
functions. The equality of the first two
derivatives in the common points of
interpolation is ensured.

It is stated that in these cases we may obtain
multiple solutions that accomplished the
imposed conditions.



The developed algorithm is general, very
efficient, and it was tested for many situations,
being transposed in a C language computer
program.

The multitude of numerical examples with
which we have worked, some of them
presented in this paper, allowed us to test the
correctness and efficiency of the calculation
procedure.
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Interpolare spline cu functii Bézier de gradul trei

Rezumat: Curbele Bézier , B-spline si NURBS utilizate in cadrul proiectarii asistate a formelor sunt in atentia unui
numar mare de cercetdtori, din punct de vedere matematic fiind utilizate atat Tn probleme de interpolare cat si de
aproximare. Colectivul nostru a studiat si solutionat problema interpoldrii de tip spline utilizand curbe Bézier de gradul
trei intre punctele de interpolare. A fost stabilit un algoritm pentru formarea elementelor modelului matematic de
rezolvare, foarte eficient, care a fost programat in cadrul unui program C, cu care s-au realizat o serie de exemplificari
ale procedeului gasit. Diagramele prezentate aratd ca existd mai multe variante de curbe de interpolare care indeplinesc
conditiile impuse, deoarece numarul acestora este mai mic decat cel al necunoscutelor.
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