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Abstract: In this study, we are trying to determine the stresses state of the proximal femoral bone in the 
case of bipodal and unipodal support. Apply the section method by evaluating axial force N, shear force T 
and bending moment Mi, and plotting the variation diagrams. By drawing the force and moment variation 
diagrams, the maximum loaded transversal secţion is highlighted, corresponding to the intertrochanteric 
area for both cases of support. For unipodal support, in the intertrochanterian area, the stresses produced 
by the axial force, shear force and bending moment are calculated, their variation diagrams are drawn and 
the maximum loaded fiber is identified. 
Key words: proximal femoral bone, bipodal support, unipodal support, intertrochanterian area, axial force, 
shear force, bending moment, normal stresses, shear stresses 

 
 

1. INTRODUCTION 

 

In the position of orthostatism, with 

bipodal support, the human body has a 

symmetrical loading on the two ends of the 

femoral bones. In order to ensure the equilibrium 

position in the front plane, no action of the 

muscular forces in required. Braune W. And 

Fischer O. [1] consider the weight center, 

denoted with S4, according to Figure 1, as being 

positioned on the upper right vertical line in the 

middle of the line joining the centers of the two 

femoral joints. 

The center of gravity is the geometric 

place where the mass of the two upper limbs, the 

body mass and the mass of the head are 

concentrated. 

If the mass of the lower limbs is 

considered to be 2x0.185 [4] of the total mass M 

of the body, it results theat in the center of 

gravity, positioned in the S4 node, it acts as a 

0.63xM mass. Each proximal femoral bone will 

take up half of this mass. 

In the orthostatic position with unipodal 

support, having the center of gravity in the S5 

node, according to Figure 2, the biomechanical 

joint conditions are changed.  

 Thus, the entire weight of the body 

(upper limbs, tors, head and lower oscillating 

 

Fig.1 Proximal femoral bone in bipodal support [2, 3]. 

 
Fig.2 Proximal femoral bone in unipodal support [2, 

3]. 
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limb) is taken over by a single joint. Eccentric 

support of the basin on a single joint causes an 

action of balancing the muscular forces, 

preventing the basin from swinging towards the 

side of the lower oscillating member. Total 

movements during walking cause the emergence 

of dynamic forces that increase articular stress 

[5]. It is assumed that the joint surfaces are 

perfectly congruent, articulat cartilage behaves 

as an elastic material [6]. Thus, forces are 

normally transmitted from one surface to the 

next. 

The femoral bone is stabilized in the 

cotiloid cavity by the abductor muscles (formed 

by the small, medium and large fesier muscles), 

represented as a single resultant of the Fm forces. 

The angle of this force is about 71 degrees 

relative to the horizontal plane. For the 

calculation of the muscle force Fm and the FR 

force acting of the hip joint when a person is 

standing vertically, resting on one foot in a slow 

movement, it is considered that the size of these 

forces on the body weight and the geometric 

relationships between the center of the mass and 

the proximal femur. 

 

2. METHODS 

 

Thus, the present study will take into 

account a body mass of 74 kg. For the two 

support cases, by applying the section method, 

the axial force N, the shear force T and the 

bending moment Mi in the lower limb are 

determined and the variation digrams of these 

efforts are drawn to highlight the maximum 

loaded section. 

The case of bipodal support. In Figure 

3 is presented the lower limb in bipodal support. 

It has the following dimensional characteristics: 

the length on the tibia (range 1 – 2) is 400 mm, 

the length of the femoral bone diaphysis (range 

2 – 3) is 450 mm, the angle formed by the 

anatomical axis of the tibia and the anatomical 

axis of the femoral bone is 174 degrees, the 

angle formed by the mechanical axis of the 

pelvic limb ( the center of the femoral head – 

center of the ankle) with the anatomical axis of 

the femur is 6 degrees, the femoral neck length 

(range 3 – 4) is 70 mm, the angle formed by the 

anatomical axis of femoral bone and the 

anatomical axis of the femoral neck is 126.22 

degrees. Force R has the value of 228.671 

Newtons and the Gmi force is 134.198 Newtons. 

On the range 1 – 2, corresponding to the 

tibia, the efforts are expressed through the 

following relations: 

��� � ��� � ��
2 ;	��� � 0;	
�� � 0 

On the range 2 – 3, corresponding to the 

femoral bone diaphysis, the efforts are expressed 

through the following relations: 

��� � ���� � ���; 	��� � ��� � ����; 

�� � ���� ∙ � � ��� ∙ � 

where the variable x has two extreme points 

representing the limits of the range 2 to 3. 

On the range 4 – 3, corresponding to the 

femoral neck, the efforts are expressed through 

the following relations: 

��� � ���; 	��� � ���; 	
�� � ��� ∙ � 
where the variable x has two extreme points 

representing the limits of the range 4 to 3. 

In Figure 4 are plotted the axial force N, 

the shear force T and the bending moment Mi 

diagrams. 

 Table 1 gives the effort values 

corresponding to the three intervals. 

 

 
Fig.3 The pelvic limb in bipodal support. 
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Table 1  

The effort values of pelvic limb in bipodal support. 

Range Axial 

force, 

N [N] 

Shear 

force, 

T [N] 

Bending moment, 

Mi [N·mm] 

1 - 2 -363 0 0 

2 - 3 -227.4 23.9 Nod 2 Nod 3 

0 -10,754.4 

4 - 3 -169.3 

 

-153.7 

 

Nod 4 Nod 3 

0 -10,754.4 

 

The case of unipodal support. Figure 5 

shows the lower limb in unipodal support for the 

case where the mechanical axis relative to the 

anatomical axis of the tibia forms an angle of 

10.24 degrees. 

The static equations are written as 

follows: 

1�	��� � 0⇒��� ∙ ���71 ! �" ∙ ���# � 0 

2�	��$ � 0⇒ �� ∙ �%&71 � �" ∙ �%&# � ���
! �� � 0 

3�	�
�� � 0⇒ �� ∙ �%&# ∙ 37.067 � 

��" ∙ ���# ∙ 59.365 ! ��� ∙ 125.839 � ��
∙ 196.948 � 0 

4�	�
�� � 0⇒ �� ∙ �%&71 ∙ 37.067 � 

��� ∙ ���71 ∙ 59.365 ! ��� ∙ 87.772 � ��
∙ 159.881 � 0 

where: the term 37.067 represents the distance 

(on mm) from node 3 to node 4 in the horizontal 

plane; the term 59.365 represents the distance 

(on mm) from node 3 to node 4 in the vertical 

plane; the term 196.948 represents the distance 

(on mm) from node 1 to node 3 in the horizontal 

plane; 87.772 represents the distance (on mm) 

from node 2 to node 4 in the horizontal plane; 

the term 159.881 represents the distance (on 

mm) from node 1 to node 4 in the horizontal 

plane. 

 From the equilibrium relations, the 

magnitude of the forces Fm=6,633.276 Newtons 

and FR=7,193.66 Newtons results for an angle 

value of α=72.53 degrees. 

By applying the section method, the 

effort is calculated on the three intervals as 

follows: 

On the range 1 – 2, corresponding to the 

tibia, the efforts are expressed through the 

following relations: 

��� � ����; 	��� � ���; 	
�� � ���� ∙ � 
where the variable x has two extreme points 

representing the limits of the range 1 to 2. 

On the range 2 – 3, corresponding to the 

femoral bone diaphysis, the efforts are expressed 

through the following relations: 

��� � ���� � ���; 	��� � ��� � ����;	 

�� � ���� ∙ � � ��� ∙ � 

where the variable x has two extreme points 

representing the limits of the range 2 to 3. 

On the range 4 – 3, corresponding to the 

femoral neck, the efforts are expressed through 

the following relations: 

��� � ��"�; 	��� � ��"�; 	
�� � ��"� ∙ � 

 
Fig.4 The efforts diagrams of pelvic limb in bipodal 

support. 

 
Fig.5 The pelvic limb in unipodal support. 
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where the variable x has two extreme points 

representing the limits of the range 4 to 3. 

 Table 2 gives the effort values 

corresponding to the three intervals. 

 
Table 2  

The effort values of pelvic limb in unipodal support. 

Range Axial 

force, N 

[N] 

Shear 

force, 

T [N] 

Bending moment, Mi 

[N·mm] 

1 - 2 -712.6 1,802 Nod 1 Nod 2 

0 -51,680.6 

2 - 3 -566.3 -165.4 Nod 2 Nod 3 

-51,680.6 -126,117.4 

4 - 3 -6,964.4 

 

-129.2 

 

Nod 4 Nod 3 

0 -126,117.4 

 

In Figure 6 are plotted the axial force N, 

the shear force T and the bending moment Mi 

diagrams. 

 

3. RESULTS 
 

 According to Figure 4 and Figure 6 the 

maximum cross section loaded is in node 3, 

corresponding to the intertrochanteric area. In 

this case, the intertrochanteric area is subjected 

to a complex compound stress: compressive 

stress caused by the axial force N, shear stress 

caused by the shear force T and the bending 

stress produced by the bending moment Mi. In 

order to assess the stresses produced by these 

efforts, it is necessary to know the geometric 

characteristics of the cross – section: the position 

of the center of gravity, the area, the axial 

moment of inertia, section modulus and the 

static moment. 

For the femoral bone studied in this 

paper, the geometric characteristics of the cross 

section of the femoral head, femoral neck, 

diaphysis and the intertrochanteric area were 

determined in the paper [7]. Thus, for the case 

where the trabecular tissue does not present a 

degradation of the architecture, the cross section 

shows a number of 1,712 trabeculae, the area is 

1,512.1 mm2, the axial moment of inertia is 

63.5x104 mm4, the static moment of the half – 

plane (in the vertical plane) is 13,411.5 mm3, in 

relation to the center of gravity of the cross – 

section, in the vertical plane, the distance to the 

bottom fiber is 39.7 mm and the distance to the 

upper fiber is 36.2 mm, the section modulus is 

15.99x103 mm3. 

The axial effort N will produce in the 

cross – section a normal compressive stress σc, 

uniformly distributed, and which is calculated as 

the ratio of this axial force to the cross – 

sectional area according to the relation: 

./ �
�
0 

The bending moment Mi will produce a 

normall stress σb, which presents, in the cross – 

section, a law of linear variation woth extreme 

values (compressive and tension stresses) in the 

lower and higher fibers according to the relation 

(Naviers’s formula): 

.1 �

�
23

� 
�
43 ∙ 5 

By overlapping the efects, by summing 

the two normal stresses (σc and σb), the 

maximum value of the normal stress σr can be 

calculated. 

The shear effort T produced by the 

bending load will produce a tangential stresses τ 

which in the cross – section has a parabolic 

variation law with the maximum value in the 

neutral axis (for which σ=0) and null value in the 

upper and lower extreme fibers according to the 

relation (Juravski’s formula): 

6 � � ∙ 73
8 ∙ 43  

Table 3 summarisez the values of the 

normal stresses given by the axial effort N and 

the bending moment Mi, the resulting normal 

stresses as well as the tangential stresses for the 

Fig.6 The efforts diagrams of pelvic limb in unipodal 

support. 
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two analyzed cases (bipodal support and 

unipodal support) and the variation diagrams of 

these stresses are plotted in Figure 7. 
Table 3  

The values of the stresses in the intertrochanteric 

area in the case of bipodal and unipodal support. 

 bipodal 

support 

unipodal 

support 

Axial load – compression 

σc [N/mm2] 

-0.15 -4.605 

Bending load 

σb [N/mm2] 

Upper fiber 0.613 7.189 

Lower fiber -0.672 -7.884 

Resulting 

normal stress 

σr [N/mm2] 

Upper fiber 0.463 2.584 

Lower fiber -0.822 -12.489 

Bending load τb [N/mm2] 0.085 1.001 

 

4. CONCLUSIONS 

 From the variation diagrams of the 

bending moments plotted in Figure 4 and Figure 

6 it is emphasized thet the maximum loaded 

cross – section is in the intertrochanteric area. 

The state of stresse depends, to a great extent, on 

the trabecular tissue architecture [7, 8]. The 

challenge is to determine the integrity of the 

trabecular tissue architecture [9] and to 

determine the geometric characteristics of the 

analyzed cross – section.  

From Figure 7 the following 

observations can be highlighted:  

-the axial effort N being negative produces an 

axial compressive load so that in the cross – 

section the normal stress σc is uniformly 

distributed;  

-the bending moment Mi produces in the cross – 

section a normal stress σb which presents a law 

of linear variation indicating that the area 

between the lower fiber and the center of gravity 

of the cross – section is compressed and the area 

between the center of gravity of the cross – 

section and the upper fiber is stretched out; 

-applying the principle of overlapping effects 

produced by the two normal stresses (σc and σb) 

it can be seen that the neutral axis (for which 

σ=0) moves from the center of gravity of the 

cross – section to the upper fiber where the 

neutral axis position is 23.19 mm from the center 

of gravity of the cross – section; 

-in the lower fiber, subjected to compression, the 

resulting normal stress has the maximum value. 

 The strength condition in that this 

maximum normal stress is less than or equal to 

the allowable stress of the trabecular and 

compact tissue, values that are highlighted in the 

literature.  

 Compared to normal stresses σ the 

effect of tangential stress τ may be negligible. 
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Starea de tensiuni ȋn osul femural proximal ȋn sprijin bipodal şi unipodal 
 

Rezumat: În prezentul studiu se urmăreşte determinarea stării de tensiuni din osul femural proximal pentru cazul 
sprijinului bipodal şi unipodal. Se aplică metoda secţiunilor evaluându-se efortul axial, efortul tăietor şi momentul 
ȋncovoietor şi se trasează diagrama de variaţie a acestora. Prin trasarea diagramelor de variaţie a eforturilor se 
evidenţiază secţiunea maxim solicitată, aceasta fiind corespunzătoare zonei intertrohanteriene pentru ambele cazuri de 
rezemare. Pentru sprijinul unipodal, ȋn zona intertrohanteriană, se calculează tensiuniunile produse de eforturi, se 
trasează diagramele de variaţie ale acestora şi se identifică fibra maxim solicitată. 
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