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KINEMATIC CONTROL FUNCTIONS FOR A SERIAL ROBOT
STRUCTURE BASED ON THE TIME DERIVATIVE JACOBIAN MATRIX

Claudiu SCHONSTEIN

Abstract: The kinematic modeling of a mechanical system with n degrees of freedom, involves an impressive volume of
computational or differential calculus. There are algorithms dedicated to this task developed in the literature. Applying
of algorithms allows a detailed, numerical and / or graphical analysis of kinematics for a mechanical structure,
regardless of its type and complexity. The results obtained with algorithms are essential in optimal design, dimensional
and energetically, but also to simulate the kinematical and dynamic behavior of the mechanical structures of the robots.
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1. INTRODUCTION

The kinematics control for a serial robot, is
an important task. According to dedicated
literature, there are multiple methods to
establish the expressions that modeling the
kinematic behavior for any mechanical
structure. The paper presents a method for
based on  matrix

kinematic  control,

exponentials, which are the basis for
establishing the time derivative for the Jacobian
matrix. Hence in the first part of paper, will be
presented the mathematical considerations in
regarding the obtaining of first derivative for
Jacobian matrix. In the second part will be
determined the time derivative of the Jacobian
matrix, in the case of a serial robot. The third
part, presents the kinematic control functions
determined on the basis of the time derivative

of the Jacobian matrix for the serial structure.

2. THE TIME DERIVATIVE FOR THE
JACOBIAN MATRIX

According to the definition expression of the
Jacobian matrix [1]-[3], based on the linear and

angular transfer matrix for velocity and
accelerations, the time derivative of the
Jacobian matrix is defined as: [2]
05, (3)=[%; i=1-n|=
(6xn) ; (1)
o5,(8) (@) s i=1-n

where %, (5) represents the linear component

and°J,, (5) is the angular component. To

establish the time derivative for the Jacobian

matrix, according to matrix exponential
algorithm from the direct kinematics, the
symbolic expression of each column from (1)
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The four matriceal expressions from (2), can
be included in a single matrix form as follows:

M {Jil}:[ME{Jil} ME {3} ME{Jil}] 3)

ME{J.}  [0] 0]
M{.t=| [0  me{i,} [0 | @
0] 0] ME{J;, }



220

ME{Js}  [0] 0]
M{Jp=| [0 ME{Gs} [0] | O
0] 0] ME{Jj}

.
, where :

Vw "Vw "TIVw

7" [bk=i—n] pOT { RN }T

:
M =[O [Bk;k:i—m]T o ﬁrl;

vw — Vi

B T
o' [bk;kzi—m] o' ETI.

M{Jia } =M, My, M

(6)

M

Vw —

where Ai’j’k’m ={{L‘ if i =R}; {0; if i =T}}, is an
operator which highlights the type of joint.

The time derivative of the expressions (3)-
(5), are determined as:

oy MENE (o)
ME{\]i1}: [0] ME{\/il} . (D
(l\gﬂxlg){vll}_% exp {;_:{E(jo)x}q]AJH (8)
. [ME{V,} (o]
('%Ax%{JiZ}_ o 1, )
where I;/IXIE {\/iz}:‘l3A| {k|OXH (10)
. _ME{\/i3} 0]
O g
ME{Vs}=[A A A,
|3
and : Al:[o]’
[0]
(1D

The time derivative of the column vector Bk ,
from (6), according to [1], [3] is determined as:
by :I3+{Ek(0)><}-sin(qk-Ak)+
(3x1) (12)
_ 2
+{kk(0) x} -[1—cos(ay - A )]-\Tk(o) G

The previous expressions will be applied
(i=1—n), resulting each column of the time
derivative for the Jacobian matrix as :

ME{Jj}-ME{3;,}- ME {35}
% =Trace{|ME{J;}-ME{Jj,}-ME {35 |- ME, 1
(i:l—>n)

ME {3, }-ME {J,,}-ME {3}
where:  ME, :[M M, M

(13)

Vw Vw Vw }

According to literature, the previous expression
can be written in a simplified form as results:

ME {3, }-ME {3;,}-ME {315} + My, +
O3 =|AME {3} ME {35, }-ME{Ji3 b+ My, + (14)
L ME{3,)-ME (3, ) ME {35}

As an important remark, the previous
obtained Jacobian matrix, contains on one hand
the Coriolis terms and complementary themes,
and on the other hand the terms referring to
centripetal accelerations.

3. DETERMINING THE TIME
DERIVATIVE OF JACOBIAN MATRIX
FOR THE SERIAL ROBOT 2TR

In  keeping with the mathematical

expressions presented in the previous paragraph
of the paper, further will be applied the steps in
establishing of the time derivative of the
Jacobian matrix for a serial structure having
three degrees of freedom as result from the
Figure 1. [5]

Fig. 1 The TTR serial structure



Hence, there is opened an external loop for
(i=1—3), and on the basis of (8) results:

ME {V;; } =1[0,] (15)

ME V) :[{E}O&}.ql. Al.exp{{il(o)x}.qu ~[0,] (16)

(3x3)

ME {\731} :[{EZ(())x}-qz A, -exp{{Ez(())x} -qZH =[0](17)

(3x3)

In keeping with (15)-(17), introduced in (7),
there are obtained the matrices [5],[6], [7]:

o [MEQL) o] o
MU g e O 09
ME{\/Zl} o |
U g e 9
_ME{V31} o |
MU g e @0

According to (6) and (12), for (i =1— 3) there
are established the following expressions:

.
My, = @ b ;k:1—>3]T o ] , Wwhere:
W =p o1
T

off T 0 T
o o1 ’ o 1)
by =|0| by = 0 by =|l;-st5+2a-(cts )

G 0 8-S03 —y (005 1)

l ﬁéO)T =[l,—al A.L’E(O)T :[03] }T
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M5, = 7T [k =2—3] " 61 _
7% —[10q]
T al
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880 —y-(cd3 —1)

BT lay (o]
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=|—(ay-s03 —1;-cd3)-ds
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According to previous expressions, the time
derivative for the Jacobian matrix in the case of
the serial structure from Figure 1, becomes:

ME {j11}'ME {J2} ME{Jys }- My, +
%3y ={-HME {31, }-ME {3, }-ME {315 }- M, +F = LO]l 27)
. X
ME {331 }-ME {3, }-ME {333} - My,

ME {351 }-ME {355 }-ME {355} My, +
%3 ={HVE {3} ME {35, }-ME {d | M5, + 1= ol (28)
. X

ME {Jg, |- ME {3z, }-ME {5 }-My,, +
3y ={ HME{Jg}- ME {35 }- ME {35} +M5,., + =l (29)
FME {3y }-ME {35, }-ME (I} - My,

Substituting  (27)-(29) in  definition
expression (1), there is obtained [5],[6] :
%(5)=[o (30)
6x3

The time derivative, for the Jacobian matrix
in the case of the structure TTR. According to
(30), duet o the fact that is a simple mechanical
structure, the time derivative is null.

4 DIRECT KINEMATICAL MODELING
FOR 2TR SERIAL ROBOT

According to [1], [2], [3] to establish the
operational kinematical parameters, for any
serial robot structure, there is needed the
Jacobian and it time derivative, which are
substituted in the following generalized
expression:
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representing the expressions of the column
vector of  operational  velocities and
accelerations, which form the direct kinematics
equations, with respect to fixed reference
frame.

In the case of the mechanical structure,
presented in the Figure 1, the expression(31),
becomes:

..... = =] e |l (32)
“ o) °3(7)||a

where, the Jacobian matrix, according to [5],
and [6] is:

0 1 0

0 0 O

1 0 O
(@)= %, 3= (33)
(6x3) 0 0 1

0 0 O

0 0 0
The direct kinematics equations, with

respect to fixed reference frame {0}, are
obtained on the basis of (33) and (30), which
substituted in (32), are leading to:

010 G,
0 0 0/|d] |0
Az 100 ’
O = | = () =] i = | s 34
0_ 0 0 1 O3
]
0 0 0flgy |0
000 0
010 i,
. 00 O|G] |0
) e
X=| | =2(0)-04%(0)-0 =|-——— | =|—|(35)
o 001 iy
0 0 0|g| [0
000 0

The previous expressions (34) and (35) , are
representing the direct kinematics model and
characterizing the end-effector’s the velocity and
acceleration of the 2TR serial structure in the
cartesian space.



5 THE EQUATIONS OF INVERSE
KINEMATIC MODEL BASED ON
JACOBIAN MATRICES

Knowing the direct kinematics equations,
based on the Jacobian matrices and its time
derivative, according to [1],[2], [4], the inverse
kinematics equations can be expressed as:

where %[0 (t)r1 represents the inverse of the

Jacobian matrix. According to [8], the
kinematic singularities are characterized by the
null value of the determinant associated to the
Jacobian matrix. Therefore, in order to avoid
this possible situation, which blocks the
robot, the

command functions can be determined by

operation of the kinematical

applying the pseudoinverse method, based on
Greville's Algorithm, developed in [9], [10].
The inverse kinematic model according to [1],
is established having as starting expression (36)
, which is leading to the following:

%X (t)=a[a (t)]-0(t);

6(t)="3(1)] - X (1) . (37)

6(t)=23[a(0)] - X(t)=aa(0)] "-%3[a(t)]-b.

On the previous considerations, in the case
of 2TR serial structure, in keeping (33), the
inverse of the Jacobian matrix is;

001000
J7'=]1 000 0 0 (38)
000100

Substituting the previous expression in (37),

there is obtained:

223
6(t)="afa (1) X (t)=
001000
—11 00000}, 0d d 00 =39
000100

=6 G )

o()="aa()]"-"X()-a[a()] - a)] 6=
001000

1000003 06 ¢ 00) = (40)
000100

o T
=& G )
which are expressing the kinematic control
functions of the 2TR type serial structure.

6. CONCLUSION

The paper, is dedicated to revealing of the
inverse kinematical model, known also as
kinematic control functions for a serial robot.
Having as starting point the matrix exponential
functions, on the basis of Jacobian matrix, there
have been determined the first time derivative,
for the velocity transfer matrices.

According to the study, the kinematic
command functions can be established based on
matrix exponential. An important remark is that
the rigidity hypothesis is maintained, but the
static hypothesis is removed, the column
vectors of the generalized and operational
coordinates becoming time functions. As can be
seen from the considerations, for determining
the kinematic command functions for a robot,
they assume the application of some
mathematical methods that help establish the
link between the elements that determine the
location of the end-effector in the Cartesian
space, and the velocities and accelerations of

the joints.
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Exponentials to Dynamics,

,Functiile de control cinematic pentru o structura seriala bazate pe derivata in raport cu
timpul a matricei Jacobiene”

Pentru modelarea cinematica a unui sistem mecanic cu n grade de libertate, care implicd un volum impresionant de

calcule fie matriceale fie diferentiale, in literatura de specialitate existd dezvoltati o serie de algoritmi dedicati acestui

domeniu. Aplicarea algoritmilor, permite o analizd detaliatd, sub forma numerica si/sau grafica, cu privire la cinematica

structurii analizate, indiferent de tipul si complexitatea acesteia. Rezultatele obtinute cu ajutorul algoritmilor, sunt

esentiale In proiectarea optimald, sub aspect dimensional si energetic, dar si pentru simularea comportamentului
cinematic si dinamic al structurilor mecanice din componenta robotilor.
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