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Abstract. Dynamic equations of a robot shall be determined by an iterative method. This method highlights the
generalized variables: generalized driving forces and liaison forces that appear in the components of the robot. So,
knowing the position vectors of the centers of masses, the work aims to determine the accelerations associated with
mass centres, the external forces and moments torsor, the liaison forces and moments torsor, respectively generalized
drivinf forces of a Gantry modular robot. In this paper the authors present the dynamic modeling of a 4 d.o.f. Gantry

robotic structure, type TTRT.
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1. INTRODUCTION

The dynamic equations of a robot are
determined by an iterative method, which
emphasizes the generalized variables, the
driving generalized forces and the contact forces
that arise between linked components of the
robot. The calculation algorithm is based on the
Luth-Walker-Paul method [3] and consists of
the two iteration to the mechanical structure for
the parts robot, respectively:

- Iterations to the exterior structure,

-Iterations inside the structure.

2. THEORETICAL JUSTIFICATION

In accordance with the kinematics structure of
a robot with n degrees of freedom (fig.1), it can be
established the dynamic equations of a robot [1].
The kinematics structure of the robot it's geometric
modeling, thus, for each item i is determined the
homogeneous transformation matrix:

R 1
L[
000 | 1
(1)
If the method of compounds operators DH
in the second variant is applied, the matrix
elements (1) following meanings:

i-1
[]; is the rotation matrix defining the
orientation of each axis of the system (T;) with
the system (Tj.;) and has the expression:

c6, —s0, 0
i1
[R],. =|sOca,, cbca,_, -sa,,
sOsa,, cOsa,_, ca,

(2)
7 is the column vector which defines the
position of origin O; of the system (Tj) in
relation with the origin O;;; of the system (Tj: 1),
with the matrix expression:
[’7]{71 =[al. —dsa; dicai—l]T'

i

3)
It's determine the inverse rotation matrix [R];'il :
[R]:\= [R LITI = [R i:fl]r, and hence,

cd, sbca,_, sOsa,,
[R]ﬁ_1 =|-s6, cbca,, cOsa,, |
O _Sai_l C(Zl-_l (4)
For each item 1 are determined the following

parameters:
M; — the mass of the element i of a robot with

n degrees of freedom
k;
M, = Za m;
s in witch
9 =*1if the item j remains in the item 1

composition; °/ = ! if the item j is eliminated;
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=i

" _ the position vector of the mass center
Ci in relation with the origin O; of the
reference system (T;), with the relation:

PP =IrlP Rl =x® y® Z’P 1
3 B | PR

e -
where i is the matrix that defines the
position and the orientation of each axis of the
reference system (T;) in relation to the reference
system DH, (Tip) which can be determined,
according to [5] the relation:

)_sz i )_‘;) (1_71 - ]_71'1))
— -— — - | i — -_—
[T]ﬁD = )_}IZ) [xi Vi Zi]i)_’%(i)i_fm);
Zip E_Z,D(Pi p:D)
0 0« 0 [ (6)

Ji" — the inertial tensor of the element i
compared with the reference system (T; ) with
the origin in the mass center Ci. This is

determined according to [Isp 04], with the
following relation:
*iD *iD *iD
Jx _ny _sz
*iD *iD *iD *iD
JU == d J, —-J,.
*iD *iD *iD
_']zx ']zy Jz
(7)

where the matrix elements are the axial and
centrifugal mechanical moments of inertia of the
element 1 determined in relation with the
reference system (Tip), with the origin in the
mass center C;.

On the robot acts the system of the weight
forces for every element 1 (i=1-n) and a system
of external forces situated at the end of the
robot.

The system of external forces is reduced
compared to the origin O,; of the reference
system (Tn+1), jointly with the gripper and the
manipulated object caught in the grip handle.
Thus, it's obtain the reduction torsos of the
external forces, with the elements: the resultant

T n+l
force "1 and the resultant moment ~ %= ,

expressed in the reference system (Ty). If the
robot is in motion, then on each axis of motion

the generalized variables 999n =157 ape
highlighted. The kinematic parameters that
characterize the movement of the element I, at a

time, are ai=l+n, which are added
the kinematics parameters of the fixed element (0):

A7 n+l

i —
o EL Y,

Bl =)=l o of
Fh=l o &,

where g is the gravitational acceleration.

By applying the Newton-Euler method the
robot's dynamic equations are determined, from
which _are obtained the generalized driving
forces.9». These results are obtained covering
the two stages of the calculation algorithm and
by introducing the notation:

(8)

=L in the case of rotation (i=1+n)

AI
{ A: =0 in the case of translation €)

1) Iterations to the exterior of the
robot mechanical structure.

Using the Newton-Euler dynamic equations,
is determined for each element i, (i=1-+n),
component of the robot, the linear and angular
velocities and accelerations, the forces and
moments exterior forces.

Applying the calculation algorithm of the
iterative method presented in the kinematics
modeling, [2] and [8] determine the following
kmematlcs parameters:

@i - the angular velocity of the element i
relative to the fixed system (Ty) from the base of
the robot, expressed in the system (T;) with the
relation:

w_[R]lw]+Aqlz’ (10)
Ei

i - the angular acceleration of the

element i relative to the system (Ty), expressed

in the system (T;) with the relation:

Ei’ _[R] —1 gtlll +A4, { [R]I 1(0 1 thkz +q1 z}’ (11)
% _ the linear acceleration of the origin of

system (T;) relative to the fixed system (T)),

expressed in the system (T;) with the relation:

11+511XV +a),1
_[ ]’I{X(Ezletl) }+
(12)

(l - A,.)(2a_),.i x ‘I[k[ +qk i[);
9i_ the mass center acceleration C; of
the element 1, determined in relation to the fixed
system (Ty) and expressed relative to the system
(Ty), by the relation:

al —a +s ><r + o/ ><(a) xr)

Ci

(13)
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Fig. 1. The kinematic structure of a robot with
n degrees of freedom

By applying to each element i, the
dynamic equations of the Newton-Euler are
obtained the reduction torsos elements for the
external forces with the following expressions:

I?ii = M i a(l,:,v
M, =J¢ +o; xJ o . (14)
2) Iterations inside of the robot
mechanical structure.

Under this case, is determined for each
element i, (i=1+n), of the robot, the forces torsos
between the elements i, i+1, respectively the
generalized driving forces of kinematics axes.

For each element i, it can be determined the
reduction torsos of the contact forces. The
elements of this torsos have the expressions:

R =M, ~F -[R]F

M| =7 xMa, +J&+axJ @ -M -

’7c, X Fii - [R];:HMIIZL - ’7111 X [R]§+1F1,i;1 . (15)

From above relation, by transforming vectors

E M, .
wand = "+ in the vectors, you get:
FLo=[REGESS M =R

i+l i+l 0i+1 i+l Oi+1

(16)

and the generalized driving forces Q'l",
which actually represents the dynamic model of
the robot:

=AMk (-A)E K+ 0
Qm z[ 10’]7 i +( 1)[ l,] i +Q[ (17)
where &/ , according to [8], reprezent the
force caused by friction and has the expressions:

Q} :biqz‘ +Q;C . (18)
The parameters b; si Qs from above relation
represent:
b; — the viscous friction coefficient;

Ok _the generalized force due to dry friction

(Coulomb friction) and it has the expression:

Qiﬂ =4 %|l€l X F’,"-|Sgn q; +

(1_Af)c[|kfi><F‘l‘i|Sgnq.i' (19)
In the above expression, c; is the dry friction
coefficient, and d; is the diameter of spindle
torque.
The dynamic equations system (17) can be
written as:

0,(1)= I:Qrin(t):fil(qj(t)' j=ten)i=tsn] (20)
and represents the dynamic model of the robot
with n degrees of freedom.

In the direct problem of robot dynamics are
known the column vector of the generalized

driving forces. Thus, the functions can be
deduced:

3(0)= 110, =la,(0) i=1+n], Q1)
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which is the robot law of motion in configurative
states space. In the inverse problem of robot
Qytﬁamics, called inverse dynamic model, functions
qle are known, and with the relation_(179 the
generalized driving forces O (t are
determinated [7].

Using Newton-Euler iterative method, with
relation (15) can be determined the elements of
contact forces torsor between the components of
the robot. In conclusion, the Newton-Euler
iterative method includes the following steps:

- 1It's shaped geometrical the mechanical
structure of the robot with n degrees of freedom
and are determined for each i=1-n, the matrices
(3) and their inverse.

Is calculated for each element i, i=1-+n,
parameters which characterizing the mass
distribution, namely: the mass M; , the position

=i

vector ' of mass center C; relative with O; [7],

[8] and the tensor Ji" with rel. 9).

It is calculated, by the iterations to the
outside, the kinematics parameters (10)-(15) and
the external forces torsor (16).

By iterations to the outside, are determined, the
contact forces torsor, whose elements are given by
(17), and the generalized driving forces using, the
dynamic equations (19).

The dynamic model of TTRT serial robot

The mechanical structural diagram of the
TTRT industrial robot, shown in fugure 2 consists
of: a traslation module 1 on the horizontal

axis 90 1, the translation module 2 on the

0,x,

horizontal axis , the rotation module 3 of the

vertical sled 4 on axis %37 and the vertical sled 4
of the gripping device, witch executes a translation

on axis O4Zs [1].

The dynamic modeling of the TTRT robot,
whose kinematics scheme is shown in figure 2 will
be achieved by applying the Newton-Euler
method, implemented in the symbolic modeling
program Robot Symbolic, Robot Dynamics
module of the Matlab 7.1 program [2].

For applying the method is required to
develop the geometric and kinematics modeling, as
well the determining of mass distribution
parameters.

On the basis of recommendations from the
articles [4] and [6], it is noted:
I,l,i=1+4
robot i=1+4
A;, 1= 1+4 — motion axis;
As — parallel axis with axis A; of rotation of
the arm, passing through the mass center Cs of

the gripping device;

— constructive parameters of the

di-9k-9k-,  the generalized coordinates

positions, velocities and accelerations

O;, 1 = 1+4 — origins of the systems Oixiy;z;,
witch coincides with the mass centers of the
robot modules;

Oy — measurement base (zero point);

Ooxoyozo — Cartesian reference fixed system

Oixjyizi , 1 = 1+4 — Cartesian reference
mobile system, solider with the mobile parts of
the robot modules

Gis §=1+5 — the mass forces related to the
modules respectively the gripping device.

E) F_’za F3
1.2 and 3;

- driving forces in the couplings

M;_ the coupling torque 3;
m; , i = 1+5 — all the masses including,
modules and gripping device;
()
JZ3 - mechanical inertial moment of the
module 3 in relation to the axis O3 z3;

(4)
Ta - mechanical inertial moment of the
mobile equipment of the orientation module 4 in
relation to the axis A4.

It is also required some simplifying
assumptions:
- It 1s considered the mass centers C; located in
in the origins O; of the Cartesian reference
system Ojxjyizi, 1=1-4 and so the position
vectors of mass center are void;
- Choosing the moving reference system so that
their axes coincide with the main directions of
inertial forces, associated with the origins of
these systems, result that the mechanical
centrifugal moments of inertia are void.

According to the Newton-Euler method,
[6] and [7], first, the mechanical structure is
walked by iteration to outward of the robot
mechanical structure.



The mass distribution parameters are
included in the table 1.
Table 1
Mass .
Element | Mass | centre Inertial tensor
i M; = J
r, i
0 o 1
0 “
0o J' o0
1 M, o) . s
[0] 2 0 0]
0 JP 0
2 M, 0 J?
[0] [(J2 0 o
0 J 0
3 M; Y
0] 0o 0 J
[0] (s 0 0]
0 JE 0
4 M ’ .
4 0 o o J*
J J i Jio
Intable 1 7+, "y, Y= i=1+4  gre the

mechanical axial moments of inertia relative to
the system i, with the origin in the mass center
Ci, and having the same guidance with the
system attached to each element of the robot [1].
Next, are determining the accelerations
corresponding to mass centers, with the
following relations:

[0
1 1 1 1 1 1 1 [EL]I_ ql
(lcl =a, +(9] XV‘,I +Q)] X(a)l Xrl,l) | g (22)
’
i
la. | a1
=2 =2 =2 =2 -2 —2 =2
a: =a, +& X1, +0, x(a)2 X’Q»z) | g (23)
5
@ =@ +zixr @ x (@) <7
5
cqy -G, +5q, -G,
[‘Z];Z =5q, G, +cq, 4§,
g+4q; (24)

@t =alvzixit o) x(@) <7t
cq, G, +5q, 4,
— 4 .. .
[a.]i=|-sq, G, +cq, G,

g+4q; (25)

According to [6], first, the mechanical

structure is walked by iteration to outward of the

robot mechanical structure. Thus, the reduction

torsos elements for the external forces system,

are determined, achieving the following
relations:
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0
Fll =|M,-q,
[F]i: MI[EC]}’ M, -g (26)
. Mz ‘h
B [F]gz Mz 91
El=Ma]; M, -g 27)
. M;-(cq, -G, +5q9,-G,)
- [Fk: M, -(=sq, -G, +cq, - G)
[F]gzMs[‘Tc]g’ M3~(g+c'j3) (28)
- M4'(C94'qz+394"jl)
- [F]j: M, (=sq, -G, +cq,-Gy)
[F]2:M4[5c]3, M, -(g+43) (29)
The moments of external forces are:
M! =J'g +@ xJ'@,
[MC:I}: o o of (30)
M =J7E o, xJ o, ’
bz J=[o o of (31)
M =J7E @ xJ o3
bz Ji=fo o of (32)
M} =JjE + ol < T 0}
b=l o 1t-a. (33)

In the second part of the Newton-Euler
method, the mechanical structure is walked by
iteration to inward of the robot mechanical
structure.

M5
5 X
5 F}; M5 _ M5
F,=|F, 05 — y
F? M’
1 “ (34)

Thus, the contact forces torsos between
elements and their moments are determined,
respectively the generalized driving forces from
the robot's couplers. The reduction torsos
elements of the payload handling are expressed
by the relations (34).

According to relation (16), the contact forces
have the following expressions:
F=[RJ:F +Ff
Flf +M,-cq, -G, + M, -5q,-G,
Ef M, -sq,-q,+M,-cq,-q

sz+M4'g+M4'% (35)
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Fig. 2. The kinematics structure of the TTRT robot

F; =[RI: F +F

[

>

M;-cq,-G,+M;-sq,-q,

3=

M, -sq, -G, +M;-cq,-q,

2 2 T3, 2
Flz :[R]3'F}3 +F;
Ef~cq4—F}j~sq4+M4~éj2
+M3".1.2+M2‘qz
F}f'sq4+M4'ijl +Flf,'c‘]4
+M3'ijl+M2'ijl
F1:5+M4-g+M4-(j3+M3-g

_+M3-ij3+M2-g

F/f +M,cq,-q,+ M, 59, -G+
]3 F/f -M,-sq, G, + M, cq, g, —

F}f+M4-g+M4-q3+M3-g

[R]}-F} + F}!
| Fcq, - F;

sq,+M, g, +
M3"jz+Mz"jz

F}S "84, +M, - g +F/f gyt
MB'.q.l+M2'ijl+M1'ql
Flf+M4-g+M4-c'j3+M3~g+

- (36) _M3~ij3+M2-g+M1~g | (38)
The moments of contact forces have the
expressions:
> e —, . = —
M} =[RI M+ 78 < FE 47 xR FY + M
Mli -1 F}f -1, Fz)s —q; Fz‘s
[M1]404: MZ +1 sz +1, sz +4; F}f
M +J*t G
1, z q3 (39)
_ . . -, —
(7)) M, =[Rl: M) +7) <+ 7 x[R] B+ M,
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(M} -1, -F' -2¢,-F' —q-F + |

qy-5q,- M, G,—q,-cq,- M, -§,—
sqy -l My gateqy -l -My g, +
q; M, -sq,-4,-cq,-q,-M, -q,

M IE 2, F v ag B+
[, =998 Ms-G2+9:59:- M, -G, -
I “ - .

eqy by My -Gy —sqy -l M, g +

<My regsrg w00y 0o My,

M; + 2 G+ 7 Gy
172 2 as3 =2 2
M; =[RE-M;, +72 < F +

7 x([RE R+ M

—5qy 1y !

5

=3cq, F g5 —

—eqy -y F
g, qy - f‘ —5q, 1y f‘ —3sq, F‘ “gy—

—5¢, 4, ;‘ —sq, 1, ; —eq, -1, ; =

cq, -1y F +eq-M; —sq,-M; —q,-M, -G, -
-2q; M, g, =1,-M,-4,=1,-M,-§, -

" eq, My -sq,-l,-F; -3sq,-q, Fp —
Sy gy f': teqgy -, ;‘-: +3eq, g5 f‘< +

o, 4, ]j +eq, -1, f? +egy-ly- f: -
54, .f: . r? - 5q, j‘ + r? +5q, U“ +
QoM Gy +2qs- MGy +1,- M, -G, +

MGt Mgy g Mgy

M +J G+ I,
sl _ 1 372 =1 1
M, =Ry M} +7) xF'+

r x[R], F} + M,

[- sqy -1y i‘ —cq, -1, - ;“' =3cq, - J" gy =

I Cdy-4y-° ‘;" —sgy -1y I.'< —3sq, - “: g~

| %44 94" " —5q, "f:"L: —Cd, !_l -

|eq, 15 ;’ +cq, - ;’IJ: —5q, - "'"f-"-.

—q, M, -G —

|=2¢, M, -G,~1,-M, -G ~1, M, -§, -

ceq,-M; —sq, 1, f: =3s5q, - q; J’< -

sqy-qy - F +eqp 1 F +3cq, g5 F) +
eqy gy Fy +eqy -1 F +oq 1 F) -
sqy -1y f —sqy -l F +sq, M)+
G- M, i, +2q,-M, -G, +1, M, -ij, +
L My-g,+1-My- g, +gy - My - g, —

42 } —qy M, g—q, M, g, —
M} +J G+ T G sq . F
Gy MG+, My -Gy +eq, 4, ; T

4, M, - g

(40)

(41)

(42)
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The generalized driving forces are:

For axis 1 Oy, , translation, the result is:

0, =5q; F + M, -G, +cq,F +
M, -g+M, g +M,-q (43)
For axis 2 9% , translation, the result is:
O, =cq, F —sq, F +
M, -g,+M;-g,+M, g, (44)
For axis 3 9% , translation, the result is:

Q,izF,f+M4~g+M4-ij3+M3~g (45)

For axis 4 9% , rotation. the result is::
4 245 x4
0,=M; +J"-q, (46)

3. CONCLUSIONS

To determine the robot's dynamic equations
using the Newton-Euler method, is primarily
needed the geometric and kinematics modeling.
Secondly are required the distribution
parameters mass and certain simplifying
assumptions of choosing the mass centers C, but
also the mechanical centrifugal moments of
inertia. With these are determined the mass
centers accelerations and the reduction torsor
elements for the external forces.

The next step is to determine the torsos of
the contact forces and the moments of these
contact forces. The last step is to determine the
driving generalized forces from the couplers
robot, their expressions representing the
dynamic equations of the TTRT robot.

These generalized driving forces represents
the system of differential dynamic equations
characterizing the dynamic model of serial
modular TTRT robot.

4. REFERENCES

[1] Blebea. A.,V. Modelarea geometrica,
cinematica si dinamica a unor roboti de tip
Gantry, destinati aplicatiilor industriale. Raport
de cercetare nr. 2, la teza de doctorat.

Universitatea Tehnica din Cluj-Napoca, 2011.

[2] Detesan, O.A., Teza de doctorat: Cercetari
privind modelarea, simularea §i constructia
minirobotilor. Universitatea Tehnica din Cluj-
Napoca, 2007.



362
[3] Fu, K., Gonzales, R., Lee, C, Robotics, control, [6] Ispas, V., Manipulatoare §i roboti industriali,

Sensing, Vision, and Intelligence. McGraw-Hill Editura Didactica si Pedagogica, Bucuresti,
International Editions, 1987. 2004.

[4] Gui, Ramona-Maria, “Modelarea geometrica, [7] Negrean, l., Itul, T., Haiduc, N., “Cinematica
cinematicda si dinamicd a robotilor industriali robotilor industriali”, Centrul de multiplicare al
propusi a fi impementati in fabricarea robotizatd Universitatii Tehnice, Cluj-Napoca, 1995.

B

a reperelor de tip flansa ”, Teza de doctorat,

) ¢ s : ) [8] Negrean, I., Duca, Adina, Negrean, C., Kacso,
Universitatea Tehnica din Cluj-Napoca, 2011.

K., “Mecanica avansata in robotica”, Editura
[5] Ispas, V., Aplicatiile cinematicii in constructia U.T.PRESS, Cluj-Napoca, 2008.
manipulatoarelor §i a robotilor industriali,
Editura Academiei Romane, Bucuresti, 1990.

Elaborarea modelului dinamic pentru un robot modular Gantry,
de tipul TTRT, cu ajutorul formalismului NEWTON EULER

Rezumat: In prima parte, lucrarea prezinti premisele teoretice necesare abordarii problemei modelarii dinamice a
unei structuri robotice seriale de tipul TTRT, folosind metoda Newton-Euler. In acest scop este nevoie in primul rand
de modelarea geometrica si cinematica a structurii propuse iar in al doilea rand este necesard cunoasterea parametrilor
de distributie a maselor. Se fac anumite ipoteze simplificatoare legate de alegerea centrelor de masa. Deasemenea este
necesara cunoagterea momentelor de inertie mecanice centrifugale a elementelor in miscare de rotatie. Pe baza acestor
date s-a determinat in continuare acceleratiile corespunzatoare centrelor de masa, apoi elementele torsorului de reducere
pentru sistemul fortelor exterioare, iar in continuare s-a determinat torsorul fortelor de legatura si cel al momentelor de
legatura. Ultimul pas a fost determinarea fortelor generalizate motoare din cuplele robotului, expresiile acestora
reprezentand ecuatiile dinamice ale structurii robotice seriale, de tipul TTRT. Studiul dinamic al unei structuri robotice
seriale dd posibilitatea obtinerii variantelor de combinare a modulelor pentru o structurd optimizata, deasemenea da
posibilitatea alegerii legilor de migcare pe fiecare axa cinematica, astfel incat consumul energetic, pe fiecare motor si pe
intreaga structura, sa fie minim.
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