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Abstract. Dynamic equations of a robot shall be determined by an iterative method. This method highlights the 

generalized variables: generalized driving forces and liaison forces that appear in the components of the robot. So, 
knowing the position vectors of the centers of masses, the work aims to determine the accelerations associated with 
mass centres, the external forces and moments torsor, the liaison forces and moments torsor, respectively generalized 
drivinf forces of a Gantry modular robot. In this paper the authors present the dynamic modeling of a 4 d.o.f. Gantry 
robotic structure, type TTRT.  
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1. INTRODUCTION 
The dynamic equations of a robot are 

determined by an iterative method, which 
emphasizes the generalized variables, the 
driving generalized forces and the contact forces 
that arise between linked components of the 
robot. The calculation algorithm is based on the 
Luth-Walker-Paul method [3] and consists of 
the two iteration to the mechanical structure for 
the parts robot, respectively: 
  - Iterations to the exterior structure,  
 -Iterations inside the structure. 
 

2. THEORETICAL JUSTIFICATION 
 

In accordance with the kinematics structure of 
a robot with n degrees of freedom (fig.1), it can be 
established the dynamic equations of a robot [1]. 
The kinematics structure of the robot it's geometric 
modeling, thus, for each item i is determined the 
homogeneous transformation matrix: 
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If the method of compounds operators DH 

in the second variant is applied, the matrix 
elements (1) following meanings: 

       [ ] 1−i
iR  is the rotation matrix defining the 

orientation of each axis of the system (Ti) with 
the system (Ti-1) and has the expression: 
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1−i

ir  is the column vector which defines the 
position of origin Oi of the system (Ti) in 
relation with the origin Oi+1 of the system (Ti+1), 
with the matrix expression: 
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It's determine the inverse rotation matrix [ ] 1−i

iR : 
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For each item i are determined the following 

parameters: 
Mi – the mass of the element i of a robot with 
n degrees of freedom 
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 in witch  
   1+=jσ  if the item j remains in the item i 
composition; 1−=jσ  if the item j is eliminated; 
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i
ci

r  - the position vector of the mass center  
Ci in relation with the origin Oi of the 
reference system (Ti), with the relation: 
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where [ ]iDiT  is the matrix that defines the 
position and the orientation of each axis of the 
reference system (Ti) in relation to the reference 
system DH, (TiD) which can be determined, 
according to [5] the relation: 
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Ji

*i – the inertial tensor of the element i 
compared with the reference system (Ti

*) with 
the origin in the mass center Ci. This is 
determined according to [Isp 04], with the 
following relation: 
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where the matrix elements are the axial and 

centrifugal mechanical moments of inertia of the 
element i determined in relation with the 
reference system (TiD), with the origin in the 
mass center Ci . 
   On the robot acts the system of the weight 
forces for every element i (i=1÷n) and a system 
of external forces situated at the end of the 
robot. 
The system of external forces is reduced 
compared to the origin On+1 of the reference 
system (Tn+1), jointly with the gripper and the 
manipulated object caught in the grip handle. 
Thus, it's obtain the reduction torsos of the 
external forces, with the elements: the resultant 

force 
1

1
+
+
n

nF  and the resultant moment 
1
1

+
+

n
On

M , 
expressed in the reference system (Tn+1). If the 
robot is in motion, then on each axis of motion 
the generalized variables  niqqq iii ÷= 1,,, &&&  are 
highlighted. The kinematic parameters that 
characterize the movement of the element I, at a 

time, are ,,,,, niav
ii cc

i
i

i
i ÷= 1εω  which are added 

the kinematics parameters of the fixed element (0): 
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where g is the gravitational acceleration. 
By applying the Newton-Euler method the 

robot's dynamic equations are determined, from 
which are obtained the generalized driving 
forces.

i
mQ .  These results are obtained covering 

the two stages of the calculation algorithm and 
by introducing the notation: 

,1=Δ i  in the case of rotation (i=1÷n)  
,0=Δ i  in the case of translation               (9) 

1) Iterations to the exterior of the 
       robot mechanical structure. 

Using the Newton-Euler dynamic equations, 
is determined for each element i, (i=1÷n), 
component of the robot, the linear and angular 
velocities and accelerations, the forces and 
moments exterior forces. 

Applying the calculation algorithm of the 
iterative method presented in the kinematics 
modeling, [2] and [8] determine the following 
kinematics parameters: 

i
iω - the angular velocity of the element i 

relative to the fixed system (T0) from the base of 
the robot, expressed in the system (Ti) with the 
relation: 
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i
iε - the angular acceleration of the 

element i relative to the system (T0), expressed 
in the system (Ti) with the relation: 
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i
ia - the linear acceleration of the origin of 

system (Ti) relative to the fixed system (T0), 
expressed in the system (Ti) with the relation: 
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cia - the mass center acceleration Ci of 

the element i, determined in relation to the fixed 
system (T0) and expressed relative to the system 
(Ti), by the relation: 
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Fig. 1. The kinematic structure of a robot with 
n degrees of freedom

 
       By applying to each element i, the 
dynamic equations of the Newton-Euler are 
obtained the reduction torsos elements for the 
external forces with the following expressions: 
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2)  Iterations inside of the  robot 
    mechanical structure. 

Under this case, is determined for each 
element i, (i=1÷n), of the robot, the forces torsos 
between the elements i, i+1, respectively the 
generalized driving forces of kinematics axes. 

For each element i, it can be determined the 
reduction torsos of the contact forces. The 
elements of this torsos have the expressions: 
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From above relation, by transforming vectors  

i
li

F
1+ and 

i
l io

M
1+  in the vectors, you get: 
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and the generalized driving forces 
i
mQ ,  

which actually represents the dynamic model of 
the robot:  
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where 
i
fQ , according  to  [8], reprezent  the 

force caused by friction and has the expressions: 
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The parameters bi şi 
i
fc

Q from above relation  
represent: 

bi – the viscous friction coefficient; 
i
fc

Q  -the generalized force due to dry friction 
(Coulomb friction) and it has the expression: 
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In the above expression, ci is the dry friction 

coefficient, and di is the diameter of spindle 
torque. 

The dynamic equations system (17) can be 
written as: 

     ( ) ( ) ( )( )[ ]Tj
i
mm ninjtqftQtQ ÷=÷=== − 111 ,,  (20)  

and represents the dynamic model of the robot 
with n degrees of freedom. 

In the direct problem of robot dynamics are 
known the column vector of the generalized 
driving forces. Thus, the functions can be 
deduced: 
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which is the robot law of motion in configurative 
states space. In the inverse problem of robot 
dynamics, called inverse dynamic model, functions 
( )tq are known, and with the relation (17) the 

generalized    driving    forces ( )tQm  are 
determinated [7].  

Using Newton-Euler iterative method, with 
relation (15) can be determined the elements of 
contact forces torsor between the components of 
the robot. In conclusion, the Newton-Euler 
iterative method includes the following steps: 
    - It's shaped geometrical the mechanical 
structure of the robot with n degrees of freedom 
and are determined for each i=1÷n, the matrices 
(3) and their inverse. 

Is calculated for each element i, i=1÷n, 
parameters which characterizing the mass 
distribution, namely: the mass iM , the position 

vector 
i

ci
r  of mass center Ci relative with Oi  [7] , 

[8]  and the tensor 
i

iJ *
 with rel. (9). 

It is calculated, by the iterations to the 
outside, the kinematics parameters (10)-(15) and 
the external forces torsor (16). 

By iterations to the outside, are determined, the 
contact forces torsor, whose elements are given by 
(17), and the generalized driving forces using, the 
dynamic equations (19). 

The dynamic model of TTRT serial robot 
 

The mechanical structural diagram of the 
TTRT industrial robot, shown in fugure 2 consists 
of: a traslation module 1 on the horizontal 
axis 10 yO , the translation module 2 on the 
horizontal axis 22 xO , the rotation module 3 of the 
vertical sled 4 on axis 33zO  and the vertical sled 4 
of the gripping device, witch executes a translation 
on  axis  44zO  [1]. 

The dynamic modeling of the TTRT robot, 
whose kinematics scheme is shown in figure 2 will 
be achieved by applying the Newton-Euler 
method, implemented in the symbolic modeling 
program Robot Symbolic, Robot Dynamics 
module of the Matlab 7.1 program [2].  

For applying the method is required to 
develop the geometric and kinematics modeling, as 
well the determining of mass distribution 
parameters. 

On the basis of recommendations from the 
articles [4] and [6], it is noted: 

41i,l,l i
i
1 ÷=  – constructive parameters of the 

robot i=1÷4 
    ∆i, i = 1÷4 – motion axis; 
 ∆5 – parallel axis with axis ∆3  of rotation of 
the arm, passing through the mass center C5 of 
the gripping device; 

kkk q,q,q &&& -, the generalized coordinates 
positions, velocities and accelerations  
Oi, i = 1÷4 – origins of the systems Oixiyizi, 

witch coincides with the mass centers of the 
robot modules; 
 O0 – measurement base (zero point); 
 O0x0y0z0 – Cartesian reference fixed system 

Oixiyizi , i = 1÷4 – Cartesian reference 
mobile system, solider with the mobile parts of 
the robot modules 

,Gi  i = 1÷5 – the mass forces related to the 
modules respectively the gripping device. 

,F1 ,2F 3F  - driving forces in the couplings 
1. 2 and 3; 

3M - the coupling torque 3; 
mi , i = 1÷5 – all the masses including, 

modules and gripping device; 
( )3
z3

J
 - mechanical inertial moment of the  

module 3 in relation to the axis O3 z3; 
( )4

4
JΔ  - mechanical inertial moment of the 

mobile equipment of the orientation module 4 in 
relation to the axis ∆4. 
 It is also required some simplifying 
assumptions: 
-  It is considered the mass centers Ci located in 
in the origins Oi of the Cartesian reference 
system Oixiyizi, i=1÷4 and so the position 
vectors of mass center are void; 
-  Choosing the moving reference system so that 
their axes coincide with the main directions of 
inertial forces, associated with the origins of 
these systems, result that the mechanical 
centrifugal moments of inertia are void. 

According to the Newton-Euler method, 
[6] and [7], first, the mechanical structure is 
walked by iteration to outward of the robot 
mechanical structure. 
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 The    mass    distribution   parameters    are 
included in the table 1. 

                                                                Table 1 

Element 
i 

Mass 
Mi 
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centre 
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In table 1 
i

xJ *
, 

i*
yJ , 

i
zJ *

, 41÷=i ,  are the 
mechanical axial moments of inertia relative to 
the system i, with the origin in the mass center 
Ci, and having the same guidance with the 
system attached to each element of the robot [1]. 
Next, are determining the accelerations 
corresponding to mass centers, with the 
following relations: 
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According to [6], first, the mechanical 

structure is walked by iteration to outward of the 
robot mechanical structure. Thus, the reduction 
torsos elements for the external forces system, 
are determined, achieving the following 
relations: 
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The moments of external forces are: 
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In the second part of the Newton-Euler 
method, the mechanical structure is walked by 
iteration to inward of the robot mechanical 
structure. 
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Thus, the contact forces torsos between 

elements and their moments are determined, 
respectively the generalized driving forces from 
the robot's couplers. The reduction torsos 
elements of the payload handling are expressed 
by the relations (34). 

According to relation (16), the contact forces 
have the following expressions: 
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Fig. 2. The kinematics structure of the TTRT robot 
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  The moments of contact forces have the 
expressions: 
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The generalized driving forces are:  

For axis 1 11yO , translation, the result is: 
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For axis 2 22 xO , translation, the result is: 
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For axis 3 33 zO , translation, the result is: 
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For axis 4 44 zO , rotation. the result is:: 
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3. CONCLUSIONS 

To determine the robot's dynamic equations 
using the Newton-Euler method, is primarily 
needed the geometric and kinematics modeling. 
Secondly are required the distribution 
parameters mass and certain simplifying 
assumptions of choosing the mass centers C, but 
also the mechanical centrifugal moments of 
inertia. With these are determined the mass 
centers accelerations and the reduction torsor 
elements for the external forces.  

The next step is to determine the torsos of 
the contact forces and the moments of these 
contact forces. The last step is to determine the 
driving generalized forces from the couplers 
robot, their expressions representing the 
dynamic equations of the TTRT robot. 

These generalized driving forces represents 
the system of differential dynamic equations 
characterizing the dynamic model of serial 
modular TTRT robot. 
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Elaborarea modelului dinamic pentru un robot modular Gantry,  
de tipul TTRT, cu ajutorul formalismului NEWTON  EULER 

   
Rezumat: În prima parte, lucrarea prezintă premisele teoretice necesare abordării problemei modelarii dinamice a 

unei structuri robotice seriale de tipul TTRT, folosind metoda Newton-Euler. În acest scop este nevoie în primul rând 
de modelarea geometrică şi cinematică a structurii propuse iar în al doilea rând este necesară cunoaşterea parametrilor 
de distribuţie a maselor. Se fac anumite ipoteze simplificatoare legate de alegerea centrelor de masă. Deasemenea este 
necesară cunoaşterea momentelor de inerţie mecanice centrifugale a elementelor în mişcare de rotaţie. Pe baza acestor 
date s-a determinat în continuare acceleraţiile corespunzătoare centrelor de masă, apoi elementele torsorului de reducere 
pentru sistemul forţelor exterioare, iar în continuare s-a determinat torsorul forţelor de legătură şi cel al momentelor  de 
legătură. Ultimul pas a fost determinarea forţelor generalizate motoare din cuplele robotului, expresiile acestora 
reprezentând ecuaţiile dinamice ale structurii robotice seriale, de tipul TTRT. Studiul dinamic al unei structuri robotice 
seriale dă posibilitatea obţinerii variantelor de combinare a modulelor pentru o structură optimizata, deasemenea dă 
posibilitatea alegerii legilor de mişcare pe fiecare axă cinematică, astfel încât consumul energetic, pe fiecare motor şi pe 
întreaga structură, să fie minim. 
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