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Abstract: In the paper is presented the working process modeling of the robot Fanuc LR Mate 100 iB, by using of 5-4-6 
type polynomial interpolation functions. These higher order polynomial functions are used to study the jerk, specific to 
a robot with a complex mechanical structure, where is necessary to determine the higher order accelerations. In this 
case, the study extends to second order accelerations, called jerk in the literature [3]. This notion, represents first order 
absolute derivative with respect to time of the vector acceleration. Therefore, in the following analysis will determined 
the expressions of linear and angular jerk. The determination of control functions requires the mathematical modeling 
of the serial robot, presented in the first part of this paper. 

Key words: exponential functions, motion trajectories, workflow, interpolation polynomial functions. 

 

1 THE MATHEMATICAL MODELING 
OF THE ROBOT  

 

1.1 The direct geometrical modeling of the 
serial structure  

 

Further, is realized the direct geometrical 
modeling of the serial structure FANUC LR Mate 
100 iB on the basis of algorithms specific to 
geometry , according to [2], [1]. Also, throughout 
this part, will be studied the robot inverse 
geometrical model mentioned above. 

To establish the direct geometrical model of the 
FANUC LR Mate 100 iB will be used the matrix 
exponential algorithm. The FANUC structure, has 
five degrees of freedom. By applying the matrix 
exponential algorithm, there is determined the 
position vector and the rotation matrix between the 
frames{ } { }0 6→ . These are describing the location 
(position and orientation) of end effector with 
respect to { }0  fixed frame attached to the fixed base 
of robot (Cartesian space). The rotation matrix and 
respectively the position vector are defined with the 
following expressions: 
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In the previous expressions { }; ;i i i ik x y z=  and 

{ } ( )1i i i i i iv p k k= × ⋅Δ + −Δ ⋅  are representing the screw 

parameters of the oriented axis { }i  around or along 
which are registered the generalized coordinates.  

 

Table 1 
The nominal geometry matrix  

Elem. Link ( )0 T
ik  ( )0 T

ip  T
iv  

1 R 0 0 1 0 0 0 0 0 0 

2 R 0 1 0 l1 0 0 0 0 l1

3 R 0 1 0 l1 0 d1 -d1 0 l1

4 R 0 1 0 l1,2 0 d1 -d1 0 l1,2

5 R 1 0 0 l1,2 0 d1 0 d1 0 

6 - 0 1 0 l1,2,3 0 d1 - - - 

where 1,2 1 2 1,2,3 1 2 3l  l  l ; l l  l  l= + = + + ; 

Having the kinematic scheme of the 5R type 
robot, according to Fig. 1, respectively the nominal 
geometry matrix ( )0

vnM  (see Table 1), specific to 

initial configuration ( )0θ  of robot, there is 
determined the rotation matrix, respectively the 

position vector of the frame attached to the 
characteristic point { }6  with respect to fixed 
reference frame, using the expressions (1) and (2), 
resulting: 
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 (5) 

In order to establish the resultant column vector 
of the homogenous position and orientation 
parameters, it must be determined the Euler`s angle 
set, which expresses the orientation of the frame 
{ }6  with respect to { }0  by using the rotation 

matrix [ ] ( )0

6
; ;z y xR R α β γ= : 
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(6) 

From (6) are resulting the set of Euler angles 
which in the case of the articulated structure with 5 
d.o.f, 5R is defined by using the expression: 

1 2,3,4 5 ;
T T

z y x q q qα β γ⎡ ⎤ ⎡ ⎤Ω = = ⎣ ⎦⎣ ⎦  

Thus, the column vector of the homogenous 
position and orientation parameters is obtained as: 
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Remarks: Using as comparative study the two 
algorithms specific to direct geometry, there is a 
perfect identity of the results, so that each of the two 
algorithms have specific features regarding the 
direct geometrical modeling. 

 

1.2 The Inverse geometry equations for the 
robot Fanuc 

 

To establish the inverse geometrical equations, 
there is assumed that is known the position of the 
end effector { }6  with respect to the fixed reference 
frame, so the column vector of the homogeneous 
position and orientation parameters 0 X  is expressed 
by numerical values as: 

 0 T

x y z y xX p p p β γ⎡ ⎤= ⎣ ⎦ .     (8) 
Knowing the homogeneous vector parameters it 

can be determined locating matrix between the 
system attached to the end effector and the fixed 
reference system [ ]0

6
T  shown below: 

 [ ] [ ]
11 12 13
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6
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∏ ; (9) 

The unknowns of this matrix equation are the 
generalized coordinates ; 1 5iq i = → . In order to 

determine these generalized coordinates there is 
applied an algebrical method, combined with a 

geometrical one. In keeping with (9) and 
multiple it at left side with [ ]0 1

1
T −  it is obtained: 

[ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]1 0 1 2 3 4 5
10 6 2 3 4 5 6

;T q T T T T T T⋅ = ⋅ ⋅ ⋅ ⋅   (10) 
Developing the expression (10) resulting: 

 
[ ]( ) [ ] [ ]

1 1

1 0 01 1
10 6 6

1 1

1 1

31 32 33

c s 0 0
s c 0 0
0 0 1 0
0 0 0 1

c s
s c

;

0 0 0 1

x y

x y

z

q q
q q

T q T T

X X X p q p q
X X X p q p q

p

⎡ ⎤
⎢ ⎥−⎢ ⎥⋅ = ⋅ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

⋅ + ⋅⎡ ⎤
⎢ ⎥− ⋅ + ⋅⎢ ⎥=
⎢ ⎥Γ Γ Γ
⎢ ⎥
⎣ ⎦

(11) 

[ ]

1 1 2
2,3,4 5 2,3,4 5 2,3,4

2 2,3 3 2,3,4

1 5 5
6

1 2 2 2,3
2,3,4 5 2,3,4 5 2,3,4

3 2,3,4

0 0

0 0 0 1

l d sq
cq sq sq cq sq

l cq l cq
cq sq

T
d cq l sq

sq sq cq cq cq
l sq

+ ⋅ +⎡ ⎤
⋅ ⋅⎢ ⎥+ ⋅ + ⋅⎢ ⎥

⎢ ⎥−
⎢ ⎥=

⋅ − ⋅ −⎢ ⎥
− ⋅ ⋅⎢ ⎥− ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

.   (12) 

To determine the 1q , by equating of elements 
( )3;4  from (11) and (12) is resulting the following 
equation, which by solving conducts to: 

 1 1s c 0x yp q p q− ⋅ + ⋅ = ; resulting 
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To establish the angles 2 3,q q and 4q is applied 
the geometrical method. There is considered the 
triangle 2 3 4O O O  (Fig. 2) where 2 3 2O O l= , 3 4 3O O l= . 
Applying the cosines theorem, there is determined 
the angle 3q  as: 
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From Fig. 2 is resulting the equation: 

2 2
q π

= −Φ −Ω ; on which is obtained: 
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⋅ + − ⋅⎜ ⎟− ⎜ ⎟− ⋅
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;  (16) 

The generalized coordinates 4q  and 5q are 
determined from direct geometry equations as: 

 4 2 3yq q qβ= − − ; 5 xq γ= . (17) 
In this paragraph have been determined the 

generalized coordinates from each driving link by 
using the position and orientation parameters of the 
end-effector with respect to fixed coordinate 
system. 

 

2 THE MODELING OF WORKING 
PROCESS 

 

Further, will be presented the modeling of a 
working process for the serial structure Fanuc LR 
Mate 100 iB. by using the software (SolidWorks) 
there are determined the coordinations of the points 
which have to be covered by the robot during the 
workflow. These coordinations are presented as 
resulting from the Table 2.  

Table 2 
The representing of working process 

Sequence 1 

 

Seg. 

k 

( ) ( )0 T T TX p ψ=  

xp  yp  
zp  za  yb  

xγ  

 mm  º  

0 595 0 250 0° 0° 0° 

1 660,56 0 5,17 0° 30° 0° 

2 599,91 0 -240,68 0° 60° 0° 

3 428,36 0 -426,53 0° 90° 0° 

 

In the expressions (13), (15), (16) and (17) are 
introduced the data from (Table 2), hence resulting 
the configuration table which contains the 
generalized coordinates from each driving link, 
corresponding to each point. 

Table 3 
Conf.

1 3→
k Time

sτ

Durat.

ikt
s

Generalized coordinate (robot) 

2jkq

E

2jkδ

E

3jkq

E
 3jkδ

E
 4jkq

E

4jkδ

E

0 0 0 0 0 0 0 0 0 

1 0,208 0,208 28,79 28,79 -1,2 -1,2 2,41 2,41

2 0,416 0,208 57,59 28,8 -2,41 -1,21 4,83 2,42

3 0,624 0,208 86,38 28,79 -3,62 -1,21 7,24 2,41

Where: 1ik ik ikt τ τ −= − , respectively 

1ijk ijk ijkq qδ −= − , for { }1 5; 1 2; 1 6i j k= → = → = →  
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1Pz
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0Py

3Py
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0Pz

0P

2Py
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2.1 The Modeling of working process using 
( )5 - 4 - 6 type polynomial functions  

 

The mechanical robotic systems, are parts of 
manufacturing systems that performing complex 
operations to achieve the proposed task. These 
systems, during operation are describing the 
trajectories of movement in the configuration 
space or in Cartesian space. So is needed a 
continuous control of the locating parameters 
(position and orientation), of the velocities, 
accelerations, and respectively of the generalized 
forces from every driving link from the 
mechanical system. In order to study the jerk, 
specific to a complex mechanical robot structure, 
is necessary to determine the higher order 
accelerations. In this case, the study is extended to 
second order accelerations, called jerk in the 
literature [3]. This notion represents the absolute 
first order derivative with respect to time of the 
vector acceleration (linear or angular). Therefore, 
in the following analysis will be found expressions 
of linear and angular jerk. Because of this aspect 
the modeling will be done by higher order 
polynomial functions, such as 5-4-6.  

 

The input data for the 5-4-6 type polynomial 
functions are the generalized coordinates ( )ijq  in 

kinetic link in each moment kτ , 0= →k m  the 

velocities ( )&ijq , the accelerations ( )ijq&&  and jerk ( )&&&ijq  
at the beginning and at the end of each sequence: 

 
( ) { }
( ) { }
( ) { }

0 0 0 0 0; ; ; ;
; 1 1

; ; ; ;

ij ij ij ij

k ijk

m ijm ijm ijm ijm

q q q q
q for k m

q q q q

τ
τ
τ

⎧ ⎫→
⎪ ⎪→ = → −⎨ ⎬
⎪ ⎪→⎩ ⎭

& && &&&

& && &&&

.(18) 

On the first segment of the sequence, the 
interpolating polynoms for coordinates ( )1ijq t , 
velocities ( )1ijq t& , accelerations ( )1&&ijq t  and jerk 

( )1&&&ijq t  have the form presented below: 

 ( ) 5 4 3
1 15 14 13

2
12 11 10 ;

ij ij ij ij

ij ij ij

q t a t a t a t
a t a t a
= ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ +
.(19) 

By using the input conditions at the time 0=t , 
( )1 00 =ij ijq q , ( )0 0 00 = = &ij ij ijv v q , ( )0 0 00 = = &&ij ij ija a q , 

and ( )0 0 00 = =& & &&&ij ij ija a q  are obtained directly the next 

coefficients: 1 0=ij 0 ija q , 11 0 1= ⋅&ij ija q t , 2
12 0 1 2= ⋅&&ij ija q t  

and 3
13 0 1 6= ⋅&&&ij ija q t . 

For intermediary segments, the interpolating is 
realized by the functions: 

 ( ) 4 3 2
4 3 2 1 0= ⋅ + ⋅ + ⋅ + ⋅ +ijk ijk ijk ijk ijk ijkq t a t a t a t a t a ; 

 2 1= → −k m . (20) 
On the intermediary segments, the determination 

of the polynomial coefficients is realized by 
applying restrictive conditions specific to 
intermediary segment of the trajectory. For this, the 
normalized time variable is introduced by values 

{ }0;1t = . Therefore, for 0=t , there are applied the 

specific conditions to kτ , represented by 
expressions: 

 ( ) ( )1 1 1

1 1

0 ; ;1
; .

ijk ijk ijk ijk ijk

ijk ijk ijk ijk

q q q q q
q q q q

− +
− − −

− + − +
− −

= ≡ =
= =

& &
&& && &&& &&&

(21) 

For 1=t  the restrictive conditions can be 
written: 

 ( ) 1 1 1 11 ; ; ; ;ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk ijkq q q q q q q q q qδ + − + − + −
− + + += = − = = =& & && && &&& &&& . 

After applying the previous conditions, there is 
obtained the polynomial coefficient 1−=ijk0 ijka q  
where 2 1= → −k m . The interpolation of the last 
segment is realized by the following functions: 
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−
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−
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−
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+
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+
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 ( ) 6 5 4
6 5 4

3 2
3 2 1 0

ijm ijm ijm ijm

ijm ijm ijm ijm

q t a t a t a t
a t a t a t a

= ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ +
.(22) 

In the expressions which are characterizing the 
interpolation functions, on the last segment the 
normalized time variable is 1= −t t . The polynomial 
coefficients resulted directly from the restrictive 
conditions are characterized by expressions: 

( )0 =ijm ijmq q , ( )0 = = &ijm ijm ijmv v q , ( )0 = = &&ijm ijm ijma a q , 

and ( )0 = =& & &&&ijm ijm ijma a q , resulting the polynomial 
coefficients determined directly at 0=t : =ijm0 ijma q , 

1 = ⋅&ijm ijm ma q t , 2
2 2= ⋅&&ijm ijm ma q t , and 3

3 6= ⋅&&&ijm ijm ma q t . 

After applying the continuity conditions for 
intermediate segments, is resulting the following 
system of equations consisting of three major parts. 
For the first and the second segment are resulting 
the equations 

2 3
14 15 1 0 1 0 1 0 1

2
14 15 21 0 0 1 0 1

1 1 2

14 15 22 0 0 12 2 2
1 1 2

14 15 233 3 3
1 1 2

2 6;
4 5 1 2;

12 20 2 ;

24 60 6

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij

ij ij ij

a a q t q t q t

a a a q q t q t
t t t

a a a q q t
t t t

a a a
t t t

δ+ = − ⋅ − ⋅ − ⋅

⋅ + ⋅ − ⋅ = − − ⋅ − ⋅

⋅ + ⋅ − ⋅ = − − ⋅

⋅ + ⋅ − ⋅ =

& && &&&

& && &&&

&& &&&

0.ijq−&&&

(23) 

For intermediary segments 2 2= → −k m , using 
the continuity conditions, results: 

( )

( )

( )

1 2 3 4

1 2 3 4 1 1
1

2 3 4 1 22 2 2 2
1

3 4 1 33 3 2
1

;
1 2 3 4 1 0;

2 6 12 2 0;

6 24 6 0.

ijk ijk ijk ijk ijk

ijk ijk ijk ijk ij k
k k k k k

ijk ijk ijk ij k
k k k k

ijk ijk ij k
k k k

a a a a

a a a a a
t t t t t

a a a a
t t t t

a a a
t t t

δ

+
+

+
+

+
+

+ + + =

⋅ + ⋅ + ⋅ + ⋅ − ⋅ =

⋅ + ⋅ + ⋅ − ⋅ =

⋅ + ⋅ − ⋅ =

 (24) 

Using the continuity conditions on the last but 
one and on the last segment, there is obtained the 
system: 

( ) ( ) ( ) ( ) ( )1 1 1 2 1 3 1 4 1δ− − − − −+ + + =ij m ij m ij m ij m ij ma a a a ; 

( ) ( ) ( ) ( )1 1 1 2 1 3 1 4
1 1 1 1

2
4 5 6

1 2 3 4

4 5 6 2;

ij m ij m ij m ij m
m m m m

ijm ijm ijm ijm ijm m ijm m
m m m

a a a a
t t t t

a a a q q t q t
t t t

− − − −
− − − −

⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ − ⋅ + ⋅ = − ⋅ + ⋅& && &&&

 

( ) ( ) ( )

( ) ( )

1 2 1 3 1 42 2 2
1 1 1

4 5 62 2 2

4 5 61 3 1 43 3 3 3 3
1 1

4 5 6

2 6 12

12 20 30 ;

6 24 24 60 120 ;

ij m ij m ij m
m m m

ijm ijm ijm ijm ijm m
m m m

ijm ijm ijm ijmij m ij m
m m m m m

ijm ijm ijm ijm

a a a
t t t

a a a q q t
t t t

a a a a a q
t t t t t

a a a δ

− − −
− − −

− −
− −

⋅ + ⋅ + ⋅ −

− ⋅ + ⋅ − ⋅ = − ⋅

⋅ + ⋅ + ⋅ − ⋅ + ⋅ =

− + =−

&& &&&

&&&

2 3
0 1 0 12 6.ijm m ij ijq t q t q t+ ⋅ − ⋅ + ⋅& && &&&

 

Using the restrictive and continuity conditions in 
every points of the trajectory there will be established 
the polynomial coefficients, some by direct 
application, as shown in the previous theory, others 
from the calculation using systems of equations. In 
this sense, it been applied MuPad software. 
Polynomial coefficients directly determined by 
calculation are presented in the table below: 

Table 4 
Polynomial coefficients 

Se
gm

en
t 

Li
nk

 

Polynomial coefficients established directly and by 
matrix calculus  

6ika ik5a ik4a ik3a  ik2a  ik1a  ik0a

1.

2. 0.00 -41.08 69.87 0.00 0.00 0.00 0.00 

3. 0.00 1.63 -2.83 0.00 0.00 0.00 0.00 

4. 0.00 -3.44 5.85 0.00 0.00 0.00 0.00 

2.

2. 0.00 0.00 77.66 -131.34 8.40 74.08 28.79

3. 0.00 0.00 -2.29 4.95 -0.70 -3.17 -1.20

4. 0.00 0.00 6.49 -10.99 0.71 6.20 2.41 

3.

2. -177.52-462.69-313.96 0.00 0.00 0.00 86.38

3. 0.00 0.00 1.46 -4.21 0.42 1.13 -2.41

4. -14.84 -38.68 -26.25 0.00 0.00 0.00 7.24 

The real interpolation polynomials are obtained 
by replacing in normalized polynomial interpolation 
functions the variable t , with 1k ktτ τ −− presented 
in the following table: 

Table 5 
Polynomial interpolation functions 

Se
g.

 
Li

nk
 Expressions for angular coordinates, velocities, 

accelerations and jerk 
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Se
g.

 
Li

nk
 Expressions for angular coordinates, velocities, 

accelerations and jerk 

1 

2 5 4105526,01 37330,6τ τ− ⋅ + ⋅  

3 5 44175,16 1509,54τ τ⋅ − ⋅  

4 5 48829,36 3124,06τ τ− ⋅ + ⋅  

2 

2 
4 3

2
41492,19 49117,04

20072,56 3112,59 172,12
τ τ

τ τ
⋅ − ⋅ +

+ ⋅ − ⋅ +
 

3 
4 3

2
1223,87 1568,68

677,29 106,94 5,96
τ τ

τ τ
− ⋅ + ⋅ −
− ⋅ + ⋅ −

 

4 
4 3

2
3468,65 4106,62
1678,53 260,3 14,39

τ τ
τ τ
⋅ − ⋅ +

+ ⋅ − ⋅ +
 

3 

2 
6 5

4 3

2

2192115, 2 7018837, 43
9263157,66 6443564, 41

2489638,56 506438,95 42321,3

τ τ
τ τ

τ τ

− ⋅ + ⋅ −
− ⋅ + ⋅ −

− ⋅ + ⋅ −
 

3 
4 3

2
778,46 1763,19

1401,79 469,65 53,99
τ τ
τ τ
⋅ − ⋅ +

+ ⋅ − ⋅ +
 

4 
6 5

4 3

2

183255,93 586751,48
774358,71 538646,03

208117,34 42334,57 3537,72

τ τ
τ τ

τ τ

− ⋅ + ⋅ −
− ⋅ + ⋅ −

− ⋅ + ⋅ −
 

 

2.2 The graphical representation of 
kinematical parameters 

 

The variation laws of kinematic parameters 
mentioned above and which are expressing the 
relative movement of each kinetic link were 
established as shown in the above aspects, such as 
the 5-4-6 type polynomial functions. According to 
the same aspects, described above, the curves from 
the graphs are represented by red color. The 
representation with higher degree polynomial 
functions aimed at highlighting of angular jerk 
(first-order derivatives with respect to time of the 
angular accelerations), which are a feature of the 
sudden movement of the mechanical structure of 
the considered robot. 

3 CONCLUSIONS 

 

In the paper has presented the application of 
theoretical models of direct and inverse geometry 
for an industrial robot, concerning the achieving of 
a working process. Thus were established the 
kinematic control functions for coordinates, 
velocities, accelerations and generalized jerk, their  

Table 6 
Representation of the kinematical parameters 

Li
nk

  Angular 
coordinate 

Angular 
velocity 

Angular 
acceleration 

2 

   

3 

   

4 

  

 

 

 

 

 

 

Jerk for each kinetic link is presented in the 
following table: 
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calculation being performed using higher order 
polynomial functions, which led to an increased 

precision in the calculations. Based on these 
polynomial functions, there been presented 
graphically the variation of kinematic parameters. 
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MODELAREA PROCESULUI DE LUCRU AL ROBOTULUI CU STRUCTURĂ SERIALĂ TIP FANUC 

 

Rezumat: În lucrare este prezentată modelarea unui proces de lucru al robotului Fanuc LR Mate 100 iB, utilizând 
funcțiile polinomiale de interpolare de tipul 5-4-6. Aceste funcții polinomiale de ordin superior se utilizează pentru a 
studia mişcarea bruscă, specifică unui robot cu o structură mecanică complexă, unde este necesară determinarea 
acceleraţiilor de ordin superior. În acest caz, studiul se extinde asupra acceleraţiilor de ordinul doi (supraacceleraţii), 
denumită jerk în literatura de specialitate. Această noţiune reprezintă derivata absolută de ordinul întâi în raport cu 
timpul a vectorului acceleraţie (liniară sau unghiulară). De aceea, în analiza care urmează se vor regăsi expresiile 
supraacceleraţiei liniare şi unghiulare. Determinarea funcțiilor de comandă necesită modelarea matematică a robotului 
serial, prezentată în prima parte a lucrării. 
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