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Abstract: In the paper is presented the working process modeling of the robot Fanuc LR Mate 100 iB, by using of 5-4-6

type polynomial interpolation functions. These higher order polynomial functions are used to study the jerk, specific to

a robot with a complex mechanical structure, where is necessary to determine the higher order accelerations. In this

case, the study extends to second order accelerations, called jerk in the literature [3]. This notion, represents first order

absolute derivative with respect to time of the vector acceleration. Therefore, in the following analysis will determined
the expressions of linear and angular jerk. The determination of control functions requires the mathematical modeling

of the serial robot, presented in the first part of this paper.
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1 THE MATHEMATICAL
OF THE ROBOT

MODELING

1.1 The direct geometrical modeling of the
serial structure

Further, is realized the direct geometrical
modeling of the serial structure FANUC LR Mate
100 iB on the basis of algorithms specific to
geometry , according to [2], [1]. Also, throughout
this part, will be studied the robot inverse
geometrical model mentioned above.

To establish the direct geometrical model of the
FANUC LR Mate 100 iB will be used the matrix
exponential algorithm. The FANUC structure, has
five degrees of freedom. By applying the matrix
exponential algorithm, there is determined the
position vector and the rotation matrix between the
frames {0} — {6} . These are describing the location

(position and orientation) of end effector with
respect to {0} fixed frame attached to the fixed base

of robot (Cartesian space). The rotation matrix and
respectively the position vector are defined with the
following expressions:
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b={l,-q,+{ K" x| [1=c(q,-2) ]+
ROEO (g, -s5(q,-8) ]} -7 :(3)
In the previous expressions & ={x;¥;z} and

v, ={p,x}k A, +(1-A,) -k are representing the screw
parameters of the oriented axis {i} around or along

which are registered the generalized coordinates.

Table 1
The nominal geometry matrix
Elem.| Link IE(O)T ﬁfO)T v
1 R |0|0O|L}] O |0O|O ololo
2 R |[O|1|O] L, |O|O 0lol1
3 R [0|1]|0] I |O|d; di] o],
4 R |0|1|0] L, |0|d ;] 01,
5 R |1]0]|0) L, |0]|d 0ld|o
6 - 0|10 Loz |Ofdi| ||

where 1, =1+ 1,; 1,,=L+L+1;

Having the kinematic scheme of the 5R type
robot, according to Fig. I, respectively the nominal

geometry matrix M'” (see Table I), specific to

initial configuration & of robot, there is

determined the rotation matrix, respectively the

position vector of the frame attached to the
characteristic point {6} with respect to fixed

reference frame, using the expressions (1) and (2),
resulting:

I $qs 5G4 Cy = Cqs -SG5 4~ CGy + ]
CGr54 Ch
—Cqs - 54, +59; - 59,
0 8qsSGr34°SG T Cqs SGr34°Sq |
6 [R] =\ 345G, ;
+cgs - cq, —8q; - ¢4,
—8¢r3.4 Cq, 3.4 595 Cq, 54" CYs

cq, -(ll +d, -sq, +1,-cq, 5 +1; -cq2,3,4)
Ds =| 59, -(l1 +d,-sq, +1,-cq, 5 +1; -cqz,“) ; (5)
d, -cq, -1, "8G5 3 -1 85554

In order to establish the resultant column vector

of the homogenous position and orientation
parameters, it must be determined the Euler's angle
set, which expresses the orientation of the frame
{6} with respect to {0} by using the rotation

matrixg [R]= R(az; i )/x) :

_Sﬁy ==8¢,34 = ﬁy =

913,45

cB, sy, =Cqy5,°8q
¥ ] 23,4 52%:(]5;(6)
C:By'c7x =Cqy34°CY;s
Caz'cﬂy =Cq,°Cq,y5,
az =ql'
Saz'cﬁy =89,°Cq,34

From (6) are resulting the set of Euler angles
which in the case of the articulated structure with 5
d.o.f, 5R is defined by using the expression:

=[a. 8, 7] =[a dos 5]

Thus, the column vector of the homogenous
position and orientation parameters is obtained as:

cq, -(I1 +d, -sq, +1, €y, +1 -cq2’3,4)
Sql'(l +d,-sq, +1,-cqy 5+, -cq23,4)
°X = d-cq, - -1 85534 . (7)




Remarks: Using as comparative study the two
algorithms specific to direct geometry, there is a
perfect identity of the results, so that each of the two
algorithms have specific features regarding the
direct geometrical modeling.

1.2 The Inverse geometry equations for the
robot Fanuc

To establish the inverse geometrical equations,
there is assumed that is known the position of the
end effector {6} with respect to the fixed reference

frame, so the column vector of the homogeneous
position and orientation parameters °X is expressed
by numerical values as:

'X=[p. p, 2B 7] ®

Knowing the homogeneous vector parameters it
can be determined locating matrix between the
system attached to the end effector and the fixed

reference system | [7] shown below:

The unknowns of this matrix equation are the
generalized coordinates ¢,; i=1->5. In order to

determine these generalized coordinates there is
applied an algebrical method, combined with a
geometrical one. In keeping with (9) and

multiple it at left side with (:[T]’1 it is obtained:
[7)(a)-([7]=.[7]- 17 S[7)- (7)1 (10)

Developing the expression (10) resulting:
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cq, sq, 0 0
! o | 7S¢ g 0 0 o o
O[T](ql)s[T]_ 0 0 1 0 '6[T]_
0 0 01 (11)
X X X p.-cq +p,-8q
| X X X -posq+p,cq |
Iy Ty Ty p. '
0 0 0 1
I L +d,-sq, +
s s Sha s Sz gy +, gy,
I[T]= 0 qs =595 0 . (12)
¢ dy-cg, =1 -5q,,—
TG54 S5 Crza G5 C 34 ]
3854
0 0 0 1

To de:[ermjne the ¢,, by equating of e_lements
(3;4) from (11) and (12) is resulting the following
equation, which by solving conducts to:

—p,-sq,+p,-cq, =0; resulting

} (13)

p, . D
" Atanz[\/pf w0 pi+p
To establish the angles ¢,, ¢, and ¢, is applied
the geometrical method. There is considered the
triangle 0,0,0, (Fig. 2) where 0,0, =1,, 0,0, =1,.
Applying the cosines theorem, there is determined
the angle ¢, as:

dlz +122 _(px _(11 +1 'Cﬂy)'c%)z

5q; = 244, 1, _2 (14)
(.~ +1-08)5a) +(p.tsB)
- 2-d, -1, ’

q3:Atan2(sq3;ql 1—s2q3); (15)
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From Fig. 2 is resulting the equation:

g, = % —® -0 ; on which is obtained:

(p.—L-s9)

2 9
\/(pz -1 'S(/’)z + \/Pf +p; -1 -1 'C(/’)

pf +p§ —h—=l-co
2
\/(p: -1 'S(D)Z +(\Ip,f +pf, -1 -1 'C(ﬁ)

¢, =2~ Atan 2(s®; c®)-
L, -cqy

sO =

cd =

b

+ |5 (16)
— Atan?2 \/(12 Cqy )2 +(d1 =1, -sq, )2
d,—1,-sq;
\/(Zz ¢4, )2 +(d1 =1, 59, )2
The generalized coordinates ¢, and g, are

determined from direct geometry equations as:

Q4:ﬂy_Q2_q3; qs =7y - (17)

In this paragraph have been determined the
generalized coordinates from each driving link by
using the position and orientation parameters of the
end-effector with respect to fixed coordinate
system.

2 THE MODELING OF WORKING
PROCESS

Further, will be presented the modeling of a
working process for the serial structure Fanuc LR
Mate 100 iB. by using the software (SolidWorks)
there are determined the coordinations of the points
which have to be covered by the robot during the
workflow. These coordinations are presented as
resulting from the Table 2.

Table 2
The representing of working process
Sequence 1

pe | b | p. | a. b, 7.

(mm) ()

0 595 0 250 0° 0° 0°

1 660,56 0 5,17 0° 30° 0°

2 599,91 0 |-240,68] 0° 60° 0°

3 42836 0 |-426,53] 0° 90° 0°

In the expressions (13), (15), (16) and (17) are
introduced the data from (7able 2), hence resulting
the configuration table which
generalized coordinates from each driving link,
corresponding to each point.

contains the

Table 3

Conf. Generalized coordinate (robot)

k | Time

Durat.

1537 (s) <k> Doy | O | o | O | D | P
S

N RGN RN EUN RUN K

0 0 0 0 0 0 0 0 0

1 (0,2080,208|28,79|28,79| -1,2 | -1,2 | 2,41 | 2,41

2 10,416]0,208[57,59] 28,8 |-2,41]-1,21]4,83 | 2,42

3 10,624 0,208|86,38|28,79(-3,62|-1,21| 7,24 | 2,41

Where:
=Gy — Gy, for {i=1-5, j=1-2k=1->6}

Lk =Ta —Turs reSpectively

o,

ik



2.1 The Modeling of working process using
(5-4-6) type polynomial functions

The mechanical robotic systems, are parts of
manufacturing systems that performing complex
operations to achieve the proposed task. These
systems, during operation are describing the
trajectories of movement in the configuration
space or in Cartesian space. So is needed a
continuous control of the locating parameters
(position and orientation), of the velocities,
accelerations, and respectively of the generalized
forces from every driving link from the
mechanical system. In order to study the jerk,
specific to a complex mechanical robot structure,
is necessary to determine the higher order
accelerations. In this case, the study is extended to
second order accelerations, called jerk in the
literature [3]. This notion represents the absolute
first order derivative with respect to time of the
vector acceleration (linear or angular). Therefore,
in the following analysis will be found expressions
of linear and angular jerk. Because of this aspect
the modeling will be done by higher order
polynomial functions, such as 5-4-6.

segmentul k

The input data for the 5-4-6 type polynomial
functions are the generalized coordinates (g;) in

kinetic link in each moment 7,, k=0—m the
velocities (g, ), the accelerations (g, ) and jerk (g;)

at the beginning and at the end of each sequence:
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(To) - { 05 qi/O; ijgfo; q,,o’}
(r,)—> {qijk;} fork=1—>m-1;.(18)
(Tm ) d { qg’jm; qzjm’ ql]m’ qz/m’
On the first segment of the sequence, the

interpolating polynoms for coordinates ¢, (1),

velocities g, (¢), accelerations ¢, (/) and jerk

g, (¢) have the form presented below:

_ 5 4 3
4 ()= Aps U+, -t +ag, O+ (19)
2 . '
SRR TR

By using the input conditions at the time =0,
9 (0) =05 Vio (0) =Vio = dyo > Do (0) = o = Gyo

and 4, (0)= a,, = §;, are obtained directly the next

1 . _ . T 2

coefficients: a,,, = q,9, @, =G0 ti> g =dyo 17 /2
3

and a,,, =g, 4 /6.

For intermediary segments, the interpolating is
realized by the functions:

_ 4 3 2 .
9 (t) Syt s+ ay, U+ ag, T+ ag,,

u
k=2->m-1.

On the intermediary segments, the determination
of the polynomial coefficients is realized by
applying specific  to
intermediary segment of the trajectory. For this, the
normalized time variable is introduced by values

t ={0;1} . Therefore, for =0, there are applied the

restrictive  conditions

specific conditions to 7,, represented by

expressions:

9 (0) :"7q1ffk—1"? qyk:lifl);.?i;k = q.;;k—l; (21)
e = Dyje-15> Dige = Dijgenr-
For t=1 the restrictive conditions can be
written:
Qi (1) =0 O = Ui — Ui s qu = Qij7k+1 , qu = q.\jik+1; qqﬁ = q;};#—l.
After applying the previous conditions, there is
obtained the polynomial coefficient a,, =g, ,

where k=2-—>m—1. The interpolation of the last
segment is realized by the following functions:

(20)
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-\ _ -4
qi/'m (t ) - z/m6 t + az/mi t + a11m4 o+
+a

(22)

ijm3 t +a1/n12 t +a1/m] t+az/m0

In the expressions which are characterizing the
interpolation functions, on the last segment the
normalized time variable is7 =¢—1. The polynomial
coefficients resulted directly from the restrictive
conditions are characterized by expressions:
in (0) =y > Vi (0)= Vi = Q> @ (0) = @y, = G
and 4, (0)=a,, =g, , resulting the polynomial

coefficients determined directly at 7 =0: a,,, =g, ,

. . 2 3
ai/'ml :qi/'m tm > ai/'mZ : l/m : /2 and az/m3 = qi/'m ZLm /6 °

After applying the continuity conditions for
intermediate segments, is resulting the following
system of equations consisting of three major parts.
For the first and the second segment are resulting
the equations

i1y +§u15 5,/'1 ;qi;'o 4 7#[/‘0 ,ﬁ/z,-q;/o : 13/6;

ti'a[jl‘t T'aA‘/lS _Z Aijny = qyo q,,’o = yU 1 (23)
12 20 2
7 s +tT'ay15 e qx/O qu 1
24 60 6
?.aijm ?'%15 _E'aiﬂ} = —Gjo-

For intermediary segments k=2 - m—2, using
the continuity conditions, results:

+a,,+a,,+aq dﬂi;

Ay + iy + iy
TGy, T st Ay _t L(jan = 0; (24)
k k k k k1
2 6 12 2 o
Gty s T Ay T Gy T 0;
I I I kel
6 24 6

7 i
k

ijk4

= ey =0
tk+l

Using the continuity conditions on the last but
one and on the last segment, there is obtained the
system:

= s

@iy F Uy F Uy T Gy = Gy >
4
P ii(m-1)1 +t ij(m-1)2 + P Lj(m-1)3 +t T +
") m-l m-1 m-t
5 6 . .. w2 A,
+7 iy — T Qs T 7 e =Diyjm — D L+ Dy T /2,

2 6 12

T'ay(nﬂ)z T Gy T e~
3 20 30

2

m-1 m-1
tz ajm4 fz aymS T l/M6 qym ql/m m’
m m m

6 24 24 60

.a[/(m—l)S + £ 'ai,'(m 1)4 3 Gna — 3 By l‘3 Lie qxjm’

1 1 m.
By ~ Bs + By = é‘jm+qym m %o 4 / 2+q,/0 4 / 6.

Using the restrictive and continuity conditions in
every points of the trajectory there will be established
the polynomial coefficients, some by direct
application, as shown in the previous theory, others
from the calculation using systems of equations. In
it been applied MuPad software.
Polynomial coefficients directly determined by
calculation are presented in the table below:

this sense,

Table 4
Polynomial coefficients
Polynomial coefficients established directly and by

- matrix calculus

5|

> [

2 Qs | Qs | Dira | Qs | Y2 | Ginr | Dino
2.1 0.00 |-41.08|69.87 | 0.00 | 0.00 | 0.00 | 0.00

1.]3.1 000 | 1.63 | -2.83 | 0.00 [ 0.00 | 0.00 | 0.00

4.1 0.00 | -3.44 | 585 | 0.00 | 0.00 | 0.00 | 0.00
2.1 0.00 | 0.00 |77.66 |-131.34/ 8.40 | 74.08 | 28.79
2.13.1 000 | 0.00 |-229 | 495 |-0.70 | -3.17 | -1.20

4.1 0.00 | 0.00 | 6.49 |-10.99| 0.71 | 6.20 | 2.41

2. F177.521-462.69-313.96| 0.00 | 0.00 | 0.00 | 86.38

3.13.1 000 | 0.00 | 1.46 | -421 | 042 | 1.13 | -2.41

4.1-14.84|-38.68|-26.25| 0.00 | 0.00 | 0.00 | 7.24

The real interpolation polynomials are obtained
by replacing in normalized polynomial interpolation
functions the variable 7, with 7 —7,_,/t, presented

in the following table:

Table 5
Polynomial interpolation functions

Expressions for angular coordinates, velocities,
accelerations and jerk

SEq.
LITIK




Expressions for angular coordinates, velocities,

5 [ . )
25 accelerations and jerk
2 -105526,01-7° +37330,6-7*
13 4175,16-7° —=1509,54 - ¢*
4 —8829,36-7° +3124,06-7*
) 41492,19-7* —49117,04-7° +
+20072,56-7% —3112,59-7+172,12
1 —1223,87-7* +1568,68-7° —
—677,29-7> +106,94-7—5,96
4 3468,65-7 —4106,62-7° +

+1678,53-7> —260,3-7 +14,39

—2192115,2-7° +7018837,43-7° —
2 -9263157,66-7* + 6443564,41-7° —
—2489638,56- 7% +506438,95-7—42321,3

778,467 —1763,19-7° +
+1401,79- 7> — 469,65 -7 + 53,99

—183255,93-7° +586751,48-7° —
4 —774358,71-7* +538646,03-7° —
—208117,34-7% +42334,57 -7 —3537,72

2.2 The graphical
kinematical parameters

representation  of

The wvariation laws of kinematic parameters
mentioned above and which are expressing the
relative movement of each kinetic link were
established as shown in the above aspects, such as
the 5-4-6 type polynomial functions. According to
the same aspects, described above, the curves from
the graphs are represented by red color. The
representation with higher degree polynomial
functions aimed at highlighting of angular jerk
(first-order derivatives with respect to time of the
angular accelerations), which are a feature of the
sudden movement of the mechanical structure of
the considered robot.
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3 CONCLUSIONS

In the paper has presented the application of
theoretical models of direct and inverse geometry
for an industrial robot, concerning the achieving of
a working process. Thus were established the
functions for coordinates,

kinematic control

velocities, accelerations and generalized jerk, their

Table 6
Representation of the kinematical parameters
| Angular Angular Angular
-5 coordinate velocity acceleration
y 20) 7.(r) Ai.(r)
120 7 ° - 10000+
N IR
0T “ sool "
= 4000 T
2 200 = 2000 (ﬂ)
100 <,\') o ' -
L5 - -2000
-100 -4000 T
200 -6000 1
300 -8000
-10000
-a00
di(r) di(n)
6000
=1 (%) =
| )
200
T 2000 1 £
=30 - 100 5
3 ) o
-40 0 = -
o 1
B -2000 1
=100
60 1
q,(7) 200 4000
=70
80 ( ) 0 i
ohai(7) A, (z) 200008 4:(7)
] ) a e
1:. <> 5w—(A> (/)
B0 1 400 + 10000
70 1
| T
B0 200 T [ o
i - (s) (s)
40 _dn._‘;l__-, o “-“-—F‘-'
o]
20- r 200 T
10 (.S') | ~10000
ol | et
] 1

Jerk for each kinetic link is presented in the
following table:



732

Link 2 Link 3 Link 4
calculatu?n belng perfor.med using ‘h1gher order Vii(e) Vi) ki)
polynomial functions, which led to an increased o ot/ ’ o

gees+ /8 s/ Be+5 5
precision in the calculations. Based on these :e: Lad | r 4o .
. : ] v s
polynomial functions, there been presented toss (s) D_____H.(f) 78] (s)
. . . . . ¥ -— 1 -
graphically the variation of kinematic parameters. a1 b : :
'19'5': ~le+5 Ze+
-2e+5 T i
I ]
-3ess -2e+5
-de+5 -Ge+5
Institutului Politehnic i lasi, 2005, lasi Romania, pp.
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mecanismelor,

MODELAREA PROCESULUI DE LUCRU AL ROBOTULUI CU STRUCTURA SERIALA TIP FANUC

Rezumat: In lucrare este prezentati modelarea unui proces de lucru al robotului Fanuc LR Mate 100 iB, utilizand
functiile polinomiale de interpolare de tipul 5-4-6. Aceste functii polinomiale de ordin superior se utilizeaza pentru a
studia migcarea brusca, specificd unui robot cu o structurd mecanicd complexd, unde este necesara determinarea
acceleratiilor de ordin superior. in acest caz, studiul se extinde asupra acceleratiilor de ordinul doi (supraacceleratii),
denumita jerk in literatura de specialitate. Aceastd notiune reprezintd derivata absolutd de ordinul intdi in raport cu
timpul a vectorului acceleratie (liniara sau unghiulard). De aceea, in analiza care urmeaza se vor regasi expresiile
supraacceleratiei liniare si unghiulare. Determinarea functiilor de comanda necesitd modelarea matematica a robotului
serial, prezentata In prima parte a lucrarii.
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