TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics and Mechanics

Vol. 55, Issue IV, 2012

METHODS OF TRACKING AND CORRECTING THE TRAJECTORIES USING THE PROXIMITY TRANSDUCERS (PART 1)

Adrian TRIF

Abstract

In this article will be studied the problem of tracking trajectories (unknown) located in the plane $y O z$, at a given distance d_{0}. Throughout the trajectory, the end-effector, equipped with proximity transducers, must solve two problems:identification of the shape of the trajectory and the positioning of the end-effector so that the distance to the trajectory travelled to be d_{0} (known).

Key words: tracking, trajectory, end-effector, proximity, transducer, mobile system, coordinates, displacement

1. A METHOD OF TRACKING THE TRAJECTORIES.

1.1. Specify the shape of the trajectory

In the following will be studied the problem of tracking trajectories (unknown) located in the plane $y O z$, at a given distance d_{0}. Throughout the trajectory, the end-effector, equipped with proximity transducers, must solve two problems:-identification of the shape of the trajectory and the positioning of the endeffector so that the distance to the trajectory travelled to be d_{0} (known).

The following are chosen:
$\left\{\mathrm{S}_{0}\right\}$ as fixed reference system of the path; $\left\{\mathrm{S}_{1}\right\}$ as fixed reference system of incline sector of the path;
$\{\mathrm{S}\}$ as mobile reference system of end-effector at starting point;
$\left\{\mathrm{S}_{\mathrm{t}}^{1}\right\}$ as reference system of end-effector at t_{l} point;
$\left\{\mathrm{S}_{\mathrm{t}}^{2}\right\}$ as reference system of end-effector at t_{2} point;
$\left\{S_{t}^{3}\right\}$ as reference system of end-effector after the rotation of the path with α angle; $\left\{S_{t}^{4}\right\}$ as reference system of end-effector after the translation along the axis $O_{t}^{3} \cdot Z_{t}^{3}$ with $d z$; $\left\{\mathrm{S}_{\mathrm{t}}^{5}\right\},\left\{\mathrm{S}_{\mathrm{t}}^{5^{\prime}}\right\}$ as positions of mobile system of end-effector;
$\mathrm{A} \rightarrow \mathrm{y}_{\mathrm{A}}$ as initial position of proximity transducer in relation to system $\{\mathrm{S}\}$;
$\mathrm{A}_{1} \rightarrow \mathrm{a}_{\mathrm{x}}$ as shifted position of proximity transducer together with the mobile system when the distance $\mathrm{d}_{\mathrm{x}} \neq \mathrm{d}_{0}$;
$\mathrm{y}_{\mathrm{A}}=\mathrm{vt}_{1}$ as the movement of the mobile system $\{S\}$ in $\left\{S_{t}^{1}\right\}$ position.

Fig 1.1. The movement of mobile system with the proximity transducer from point A to point A_{1}

It is considered a movement of the mobile system together with the proximity transducer from position A to position A_{l}.

Initially, the proximity transducer from position A is set in y_{A} position towards the mobile system $\{\mathrm{S}\}$ which has the axis $O z$ superimposed on axis $O_{0} S_{0}$. The distance y_{A} is constant. The movement of mobile system is registered by ttransducer from position B.

The distance of y_{1} is

$$
\begin{equation*}
\mathrm{y}_{1}=\mathrm{v} \cdot \mathrm{t}_{1} \tag{1}
\end{equation*}
$$

The measured value of y_{l} is known and also the value of v and t_{l} resulting from this is:

$$
\begin{equation*}
\mathrm{t}_{1}=\frac{\mathrm{y}_{1}}{\mathrm{v}} \tag{2}
\end{equation*}
$$

According to the figure 1.1 the relations can be written:

$$
\begin{gather*}
y_{A}+v \cdot t_{1}=y_{A}+y_{1}=a_{x} \tag{3}\\
a_{0}+O_{1} A_{1}^{2}=a_{x} \tag{4}
\end{gather*}
$$

The result a_{x} can be calculatedbecause all factors are known. In equation (4) are two unknown values: a_{0} and $O_{1} A_{1}^{2}$. According to fig.1.1 it can be observed that:

$$
\begin{equation*}
\mathrm{A}_{1}^{1} \mathrm{~A}_{1}^{2}=\mathrm{d}_{0}-\mathrm{d}_{1} \tag{5}
\end{equation*}
$$

Both terms from the right member of equation are known (value of d_{1} is known) and from this is resulting $A_{1}^{1} A_{1}^{2}$. Will shift the mobile system $\{\mathrm{S}\}$ in the negative sense of the axis $\mathrm{O}_{\mathrm{t}}^{1} \mathrm{y}_{\mathrm{t}}^{1}$ until the distance $\mathrm{d}_{0}-\mathrm{d}_{1}$ will be null $d_{0}-d_{1}=0$. Therefore, the distance $O_{1} A_{1}^{2}$ can not be used because the position of point O_{1} and distance a_{0} are unknown.

If the mobile system $\{\mathrm{S}\}$ is shifted from initial position to a point where the distance d_{x} measured by the transducer from point A , is lower in value than d_{0} :

$$
\begin{equation*}
\mathrm{d}_{\mathrm{x}}<\mathrm{d}_{0} \tag{6}
\end{equation*}
$$

Assuming that the mobile system moved in position $\left\{\mathrm{S}_{1}\right\}$ in which, the transducer from point A measures the distance d_{1}, this will give to the system a movement in the opposite direction, so the distance $A_{1}^{1} A_{1}^{2}=d_{0}-d_{1}$ shall be null. Maintaining the same constant speed we can write the relation:

$$
\begin{equation*}
\mathrm{v} \cdot \mathrm{t}_{2}=\mathrm{y}_{2}=\mathrm{O}_{1} \mathrm{~A}_{1}^{2} \tag{7}
\end{equation*}
$$

$t_{2}-$ is the measured time until $A_{1}^{1} A_{1}^{2}$ is null, $A_{1}^{1} A_{1}^{2}=0$. From the right triangle $O_{1} A_{1}^{1} A_{1}^{2}$ we obtain:

$$
\begin{equation*}
\operatorname{tg} \alpha=\frac{\mathrm{A}_{1}^{1} \mathrm{~A}_{1}^{2}}{\mathrm{O}_{1} \mathrm{~A}_{1}^{2}}=\frac{\mathrm{d}_{0}-\mathrm{d}_{1}}{\mathrm{a}_{\mathrm{x}}-\mathrm{a}_{0}} \tag{8}
\end{equation*}
$$

1.2. Getting over the path

Initially, the mobile system $\{S\}$ is in a position in which the axis Oz coincides with axis $\mathrm{O}_{0} \mathrm{z}_{0}$ and axis Oy is parallel with axis $\mathrm{O}_{0} \mathrm{y}_{0}$ at the distance d_{0}. The transducer from A is at the distance y_{A} on the axis O_{y} of the mobile system $\{S\}$. This position of the transducer A is maintained towards the mobile system regardless of its position (fig.1.1).

The proximity transducer B from the initial position indicates a null distance. The both transducers measure in the perpendicular direction. To the mobile system $\{\mathrm{S}\}$ is given a displacement with a constant speed v. Being $\boldsymbol{v} \boldsymbol{\bullet} \boldsymbol{t}$ the displacement that is situated in the interval $\mathrm{O}-\mathrm{O}_{1}^{\mathrm{t}}$. After this displacement, the mobile system arrives into the position $\left\{\mathrm{S}_{1}^{\mathrm{t}}\right\}$. The transformation matrix from the system $\{\mathrm{S}\}$ to the system $\left\{\mathrm{S}_{1}^{\mathrm{t}}\right\}$ is:

$$
\mathrm{S}_{\mathrm{S}}^{\mathrm{S}_{\mathrm{S}}^{\mathrm{i}}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{9}\\
0 & 1 & 0 & \mathrm{v} \cdot \mathrm{t} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Towards the system $\left\{\mathrm{S}_{1}^{\mathrm{t}}\right\}$ the position of point A_{1} is:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{A}_{1}}=0 ; \mathrm{y}_{\mathrm{A}_{1}}=\mathrm{y}_{\mathrm{A}} ; \mathrm{z}_{\mathrm{A}_{1}}=0 . \tag{10}
\end{equation*}
$$

Here is the position of point A towards
the systems $\{\mathrm{S}\}$ and $\left\{\mathrm{S}_{0}\right\}$.
Towards the system $\{\mathrm{S}\}$, the position is:

$$
A_{S}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{11}\\
0 & 1 & 0 & v \cdot t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
y_{A} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
y_{A}+v \cdot t \\
0 \\
1
\end{array}\right]
$$

Towards the system $\left\{\mathrm{S}_{0}\right\}$ the position of point A is given by the next matrix relation:

$$
A_{S_{0}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{12}\\
0 & 1 & 0 & \mathrm{v} \cdot \mathrm{t} \\
0 & 0 & 1 & \mathrm{~d}_{0} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
\mathrm{y}_{\mathrm{A}} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{y}_{\mathrm{A}}+\mathrm{v} \cdot \mathrm{t} \\
\mathrm{~d}_{0} \\
1
\end{array}\right]
$$

The relation (12) is valid for the horizontal path $\mathrm{O}_{0} \mathrm{O}_{1}$ when $\mathrm{a}_{\mathrm{x}} \leq \mathrm{O}_{0} \mathrm{O}_{1}$ (fig.1.1).

This way the transducer A is positioned and transducer B will specify which is the course path.

Suppose that the transducer from A reached A_{0} position, mobile system will be: $\left\{\mathrm{S}_{\mathrm{t}}^{2}\right\} \rightarrow \mathrm{O}_{\mathrm{t}}^{2} \mathrm{y}_{\mathrm{t}}^{2} \mathrm{z}_{\mathrm{t}}^{2}$, (fig.1.2).

In this position a rotation with an angle $\boldsymbol{\alpha}$ is given to the mobile system $\left\{\mathrm{S}_{\mathrm{t}}{ }^{2}\right\}$ until arrives in position $\left\{\mathrm{S}_{\mathrm{t}}^{3}\right\} \rightarrow\left(\mathrm{O}_{\mathrm{t}}^{3} \mathrm{y}_{\mathrm{t}}^{3} \mathrm{z}_{\mathrm{t}}^{3}\right)$ having the axes parallel with the system $\mathrm{O}_{1} \mathrm{z}_{1} \mathrm{y}_{1}$ of the incline section of the path.

Point A_{0} will get to point A_{3} and the transducer from A_{3} will measure the distance $\mathrm{dz}_{1}>\mathrm{d}_{0}$:

$$
\begin{equation*}
\mathrm{dz}_{1}=\mathrm{A}_{3} \mathrm{~A}_{5}^{1}=\mathrm{d}_{0}+\mathrm{dz} \tag{13}
\end{equation*}
$$

In order to obtain d_{0} and to be measured from O_{1} (at the beginning of the incline path) will assume the following:

- a translation $\left[\mathrm{S}_{3}{ }^{4}\right]$ of the system $\left[\mathrm{S}_{\mathrm{t}}{ }^{3}\right]$ along the $\mathrm{O}_{\mathrm{t}}^{3} \mathrm{z}_{\mathrm{t}}^{3}$ so the $\left[\mathrm{S}_{\mathrm{t}}^{3}\right]$ becomes $\left[\mathrm{S}_{\mathrm{t}}^{4}\right]$. Point A_{3} will become A_{4} (fig.1.2). Distance measured by the transducer $\mathrm{A}\left(\mathrm{A}_{4}\right)$ will be: $\mathrm{A}_{4} \mathrm{~A}_{5}{ }^{1}=\mathrm{d}_{0}$.
- because this distance is not measured in point A_{7} which corresponds with point O_{1}, a displacement $\mathrm{O}_{\mathrm{t}}^{4} \mathrm{O}_{\mathrm{t}}{ }^{5}$ will be given to the system $\left\{\mathrm{S}_{\mathrm{t}}^{4}\right\}$, and the system $\left\{\mathrm{S}_{\mathrm{t}}^{4}\right\}$ becomes system $\left\{\mathrm{S}_{\mathrm{t}}^{5}\right\} \rightarrow \mathrm{O}_{\mathrm{t}}^{5} \mathrm{y}_{\mathrm{t}}^{5} \mathrm{z}_{\mathrm{t}}^{5}$ and point A_{4} reach A_{7}. To this
transformation corresponds matrix $\left[\mathrm{S}_{4}{ }^{5}\right]$. We note this with $\mathrm{y}_{3}=\mathrm{v} \cdot \mathrm{t}_{3} \quad\left(\mathrm{t}_{3}\right.$ is unknown).

Fig 1.2. Successive positions of the transducer placed at the point of A

$$
\begin{equation*}
\mathrm{A}_{3} \mathrm{O}_{\mathrm{t}}^{3}=\mathrm{A}_{4} \mathrm{O}_{\mathrm{t}}^{4}=\mathrm{A}_{7} \mathrm{O}_{\mathrm{t}}^{5}=\mathrm{y}_{\mathrm{A}} \tag{14}
\end{equation*}
$$

The transducer position does not change towards the mobile system. For the transformations mentioned we have:

$$
\mathrm{R}_{2}^{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{15}\\
0 & \mathrm{c} \alpha & -\mathrm{s} \alpha & 0 \\
0 & \mathrm{~s} \alpha & \mathrm{c} \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Coordinates of the point A_{3} towards the immobile system $\left\{\mathrm{S}_{0}\right\}$ will be:
$\mathrm{A}_{0}^{3}=\left[\mathrm{T}_{0}^{2}\right] \cdot\left[\mathrm{R}_{2}^{3}\right] \cdot\left[\mathrm{A}_{3}^{3}\right]=$
$=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & v \cdot t \\ 0 & 0 & 1 & d_{0} \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & c \alpha & -s \alpha & 0 \\ 0 & s \alpha & c \alpha & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ y_{\mathrm{A}} \\ 0 \\ 1\end{array}\right]=$
$=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & c \alpha & -s \alpha & v \cdot t \\ 0 & s \alpha & c \alpha & d_{0} \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{c}0 \\ y_{A} \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ y_{A} c \alpha+v \cdot t \\ y_{A} s \alpha+d_{0} \\ 1\end{array}\right]=\left[\begin{array}{c}x_{A_{3}}^{0} \\ y_{\mathrm{y}_{3}}^{0} \\ \mathrm{z}_{\mathrm{A}_{3}}^{0} \\ 1\end{array}\right]$

$$
\begin{align*}
{\left[\begin{array}{c}
A_{4 x} \\
A_{4 y} \\
A_{4 z} \\
1
\end{array}\right]=\left[T_{3}^{4}\right] \cdot\left[\begin{array}{c}
A_{3 x} \\
A_{3 y} \\
A_{3 z} \\
1
\end{array}\right] } & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d z \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
A_{y} \\
0 \\
1
\end{array}\right]= \tag{16}\\
& =\left[\begin{array}{c}
0 \\
A_{y} \\
d z \\
1
\end{array}\right] \tag{18}
\end{align*}
$$

For the translation from the system $\left\{\mathrm{S}_{\mathrm{t}}{ }^{4}\right\}$ to system $\left\{\mathrm{S}_{\mathrm{t}}^{5}\right\}$ the matrix relation is:

$$
\mathrm{T}_{4}^{5}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{19}\\
0 & 1 & 0 & \mathrm{v} \cdot \mathrm{t}_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Position of point A_{4} towards the system $\left\{\mathrm{S}_{t}^{5}\right\}$ is given by the following:

$$
\begin{align*}
& {\left[\begin{array}{c}
A_{\mathrm{x}_{4}}^{5} \\
\mathrm{~A}_{\mathrm{y}_{4}}^{5} \\
\mathrm{~A}_{\mathrm{z}_{4}}^{5} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & \mathrm{v} \cdot \mathrm{t}_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{A}_{\mathrm{x}_{4}}^{4} \\
\mathrm{~A}_{\mathrm{y}_{4}}^{4} \\
\mathrm{~A}_{\mathrm{z}_{4}}^{4} \\
1
\end{array}\right]=} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & \mathrm{v} \cdot \mathrm{t}_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
\mathrm{y}_{\mathrm{A}} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{y}_{\mathrm{A}}+\mathrm{v} \cdot \mathrm{t}_{3} \\
0 \\
1
\end{array}\right]} \tag{20}
\end{align*}
$$

As a result, point A_{4} will reach A_{7} having the coordinates $\mathrm{x}_{\mathrm{A}_{7}}=0 ; \mathrm{y}_{\mathrm{A}_{7}}=\mathrm{y}_{\mathrm{A}}$ in the system $\left\{\mathrm{S}_{\mathrm{t}}^{5}\right\}$ (the position of the transducer from point A does not change towards the mobile system).

The mobile reference system $\left\{\mathrm{S}_{\mathrm{t}}^{5}\right\}$ is parallel with the immobile system $\left\{\mathrm{S}_{\mathrm{t}}{ }^{1}\right\}$ of the incline section of the path, so the transducer from A_{7} will measure the distance d_{0}.

There are three stages for tracking the path:
-First stage describes the path which is unknown by the transducer from A and B;
-The second stage describes the movement on the horizontal path;
-The third stage, describing the movement of the incline section of the path.

Mobile system positions will be presented below, through a succession of images:

Fig 1.3. The initial position of the mobile system

Fig.1.4.Mobile system position, for $A=A_{1}$ and $\{S\}=\left\{S_{t}^{1}\right\}$

Fig.1.5.Mobile system position, for $A=A_{0}$ and $\{S\}=\left\{S_{t}^{2}\right\}$

Fig.1.6.Mobile system position, for $A=A_{3}$ and $\{S\}=\left\{S_{t}^{3}\right\}$

Fig.1.7.Mobile system position, for $A=A_{4}$ and $\{S\}=\left\{S_{t}^{4}\right\}$

Fig.1.8.Mobile system position, for $A=A_{5}$ and $\{S\}=\left\{S_{t}^{5}\right\}$

2. REFERENCES

1. Drăgulescu, D. Robot Dynamics, E.D.P. R.A, Bucureşti, 1997.
2. Ispas, V., Manipulators and industrial robots, E.D.P., Bucureşti, 2004.
3. Kovacs, F., Rădulescu, C. Industrial robots, Multiplication Centre of The Technical University, Timişoara, 1992.
4. Kovacs, F. About accuracy and positioningorienting incertitude of the industrial
robots programmed by training, MERO'91, vol. I, Bucureşti, 1991.
5. Negrean, I. ş.a. The influence of DenavitHartenberg Type Parameters Upon Robot Kinematic Accuracy, The second ECDP International Conference on Advanced Robotics, Vienna, September, 1996.
6. Paul, R.P., Robot Manipulators, Mathematics, Programming and Control, MIT Press, Cambridge, 1981.
7. Popescu, P, a.o. Robot and Manipulators Mechanics, vol. 1-5, E.D.P., Bucureşti, 1994-1995.
8. Popescu, P., Popescu, R. Contributions regarding the Orientation and Positioning Accuracy of a Robot Mechanical Structure, 4-th International Workshop on Robotics in Alpe-Adria Region, R.A.A., 1995, Austria.
9. Popescu, P., Trif, A., Haiduc, N. Contribuții privind modulul de micromişcare al unui robot industrial, partea I, Construcția de maşini, Bucureşti,2004.
10. Popescu, P., Trif, A. Contribuții privind modulul de micromişcare al unui robot industrial - partea a II-a, Construcția de mașini, Bucureşti, 2004.
11. Trif, A., Popescu, P., Haiduc, N., A few studies about positioning accuracy, effect of generalized coordinates errors at a robot with four degree of freedom, Acta Tehnica Napocensis, No. 51, Vol.1, Technical University of Cluj-Napoca, 2008.
12. Trif,A., Contributions about accuracy of industrial robots, Phd Thesis, Technical University of Cluj-Napoca, 2011.

Metode de urmǎrire şi corectare s traiectoriilor cu ajutourl traductoarilor de proximitate (partea I-a)
Rezumat: În această lucrare este studiată problema urmăririi unei traiectorii (necunoscută) situată în planul yOz, la o distanță dată d_{0}. În drumul parcurs, dispozitivul de prehensiune, dotat cu traductori de proximitate, trebuie să rezolve două probleme: - identificarea formei traiectoriei; - poziționarea dispozitivului de prehensiune astfel încât distanța față de traiectoria parcursă să fie d_{0} (cunoscută).

Adrian Trif, Lecturer, Technical University of Cluj-Napoca, The Department of Manufacturing Technology, The Faculty of Machine Building, adrian.trif@tcm.utcluj.ro, 0264-401614; Home adress Răsăritului Street, no 102/11, 400587, Cluj-Napoca, 0264-419601.

