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Abstract: The abbreviation E.D.M. means “ELECTRICAL DISCHARGE MACHINING” and refers to the 
materials processing (micro-smelting) by electrical discharge of spark or flame type. The numerous 
applications of this process are in domain of the polishing, micro-penetration, micro-cutting operations. 
The de-crystallization in this case is made quickly and at very high temperature. This means that we deal 
with a STEFAN problem of jump type. The boundary condition of Neumann type refers to the thermal 
flux, traversing the processed surface. Therefore, at the crater’s free boundary, produced by EDM, it 
requires that jump of the thermal flux to not transcend a given value. In most of cases is used as a 
distribution of the thermal field, the GAUSS distribution. Because of the high grade instability of the 
solution, representing the thermal field, the boundary condition must not contain rough approximations. 
The Gauss function becomes null only if the crater radius tends to infinity. But is well-known that the 
crater radius is very small, therefore the flux approximation by the Gauss function can’t be null. We 
eliminate this drawback replacing  the Gauss function with  a cardinal cubic Spline of regression, having 
the Gauss function’s carriage and which becomes null with its derivative at the crater’s boundary. 
Although the obtained mathematical model is a laborious one, its use not contains difficulties, 
considering the possibility to use some performance numerical software..  
Key words: .D.M. process, flux of thermal field, Stefan problem, boundary value problem with free 
frontier, jump of a function, Spline function, regression function, Gauss function, Neumann type boundary 
condition. 
 
 

1. INTRODUCTION  
 
The thermal field determination produced in 
EDM process, which generally is unsteady, is 
very important, because, first of all, permits to 
establish the shape of the crater, its dimensions, 
the eliminated material’s volume by micro-
smelting etc.  
The scheme of EDM process is given in fig. 
2.1. 
If processed material is homogeneous  and 
isotropic we denote: 

     
                                                   (1.1)  

the thermal diffusion of the material a=a[m2/s],  
where:  
Kt  – represents the thermal conductivity of the 
material, Kt = Kt  [  ] 
ρ  - material density,  ρ = ρ [ kg/m3 ] 

Cp  -  specific heat    Cp = Cp [ kgK] 
T – thermal field, T : [0, + ) ×  ,   T = 
T (t, x, y, z), where t = t[s] represents the time 
and (x, y, z) are the special coordinates of the 
material point. In this hypothesis, the Cartesian 
equation of Fourier – Kirchhoff is given by: 
  

                                                           
(1.2) 

where    is the thermal field’s Laplace:   
               

 =  +   +                             (1.3) 

The determination of the general solution for 
(2.2) will be done transforming this equation in 
cylindrical coordinates. 
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Fig. 1.1. Schematic diagram of micro-EDM process [6]  

 
 
2.  FOURIER–KIRCHHOFF’S EQUATION 
IN CYLINDRICAL COORDINATES 

 
Using the hypothesis formulated over the 

processed material and the cylindrical 
coordinates: 

     , with       (2.1) 

                 r > 0,                                       

 the  equation (1.2) becomes: 
 

            = (  +   + )         (2.2) 

 
The equation (3.2) is named Fourier- 

Kirchhoff’s equation in cylindrical coordinates. 
Have to mention that the composed function T 
= T(t, r, z) not depends on , because of the 
isotropy even if: 

T(t, r, z) = T(t, r , r )      (2.3) 
This transformation of (1.2) into (2.2) is 
necessary because in (2.2) we can apply the 
method of separation of the variables, obtaining 
the general solution for Fourier – Kirchhoff 
equation, in both of cylindrical and Cartesian 
coordinates. In the specialty literature, as in [9], 
this operation is known, results that we assume 
as such, because the interest of this paper is to 

propose the spline function as the distribution 
of the thermal flux. 
Therefore,  

T(t,r,z)= (L,M) (M) (L)· 
(r )              (2.4) 

where  L, M > 0  are constant of integration as 
well as , . 
 These integration constants are determined 
from the initial condition: 
      T(0, r, z) =                                 (2.5) 
where  r > 0, ,   and    is the thermal 
field value of the environment. 
 In the general solution given by (2.4) 
appears the Bessel’s function, J0 and its 
representation as a series is: 

        J0 (x) =                (2.6) 

 
respectively the integral representation of  J0  is 
given by the following formula: 

    J0 (x) =           (2.7) 
In this paper we’ll use the 

representation given in (2.6). 

 
3.  OPTIMAL CUBIC SPLINE OF 
REGRESSION  

 
Let n be an arbitrary discretization of a 

closed bounded interval [a, b] and  = [  
],  k = 0 n   a generic subinterval of a 

discretization n. Organize  as a geometrical 
finite element with five knots,  and  
being double knots, respectively: 

 
      =    a simple knot. 

Making an offline transformation,  

        T:    t =  ,   t [0, 1]          (3.1)  

the geometrical finite element     transform 
into a canonical finite element    = [0, 1], 
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having the knots =0 and  =1  double ones 
and   , simple knot,    (0, 1). 

 The finite element base   attached 

to the canonical element    is defined by the 
following condition: 
 
          =  1 ,     = 0            (3. 2) 
 
          =  = 0                      (3.3) 
 
 Analogously for the rest of the elements 
from the base, that is 
          = 1,        = 0 and     (3.4) 
       
           =  =   = 0    (3.5) 
 
 Then we put conditions for the simple knot 

, that means: 
 
  =1, = = =0  (3.6) 
 
       =  = 0                         (3.7) 
 
 The conditions for the double knot  are as 
in the cases (4.2) and (4.3), that is:  
 

     = 1,      =    = 0   (3.8) 
 

     =  = 0                           (3.9) 
 

     = 1,     = 1                  (3.10) 
 
     =   =  = 0        (3.11) 

In this paper we’ll take  = . 

Determine the base functions of cubic 
Spline type: 
 

(t) = + +  +  +  

                                             (3.12) 

 t   [0, 1] = . 
 
       Using the conditions (3.2) – (3.11), 
determine every element from the base, and we 
have:   

                   

                                              (3.13) 
 
Here we used the truncated function: 

   =     

     (3.14)               
  
 Define the vector space     by:    

Span  and the projection operator:  
    . 

 
             ,   
 y = ( )                                 (3.15) 
               

We can easily verify that   is invariant 
for 1, ,  and . 

Determine an element from , which has 
to be a regression with respect to two empirical 
random variables. 

 

    : ,              

     :  

 
Therefore, determines  ,    = 1  5 , 

such that: 
     =   ,         (3.16) 

Minimizes the function 
 ( ) =      

          (3.17)             
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      The form (3.17) of the function  ( ),  
 assures the existence and 

oneness of the minimum point   = 
( ). 
 Therefore,   is the critical point for ( ), 
that is,  is the solution of linear system: 
 

           ,                  (3.18)     

      
     This system is equivalent with:     

 

                                        (3.19) 
     In this equation, the Spline functions   

,   are obtained from (3.13), 
determining t  from (3.1), that is:                             

  

 
             (3.20) 

  with    
                        (3.21) 

 
          (3.22) 

 
    With     ,   determined we 
obtain the optimal cubic Spline of regression, 

                       
                     (3.23) 

 
4. STEFAN’S PROBLEM OF JUMP TYPE 
FOR THE EDM PROCESS 

 
Is known that in the EDM process obtains 

craters with very small diameters and in the 
micro-smelting process these craters enlarge 
their volume in time. If  denotes the 
crater’s frontier, that is a surface separating the 
liquid and solid parts of the materials, then  
modifies in time displacing from the liquid part 
to the solid one. The surface  is named 
“free frontier” or “variable frontier”. Solving 

the Stefan problem it means to find out the free 
frontier and the solution of the Fourier – 
Kirchhoff equation’s too. Moreover this 
solution must satisfy  the initial, the classical 
boundary value and the thermal flux jump’s 
conditions in the points of the free frontier.   

 
a).                                                

  
b).                                                            

Fig. 4.1 The geometrical image of thermal flux 
distribution for the Gauss a). and cubic Spline b). of 

regression models. 
In the followings we present the three types 

of conditions over the general solution given by 
(3.4). These conditions allow to determine 
uniquely the integration constants from the 
general solution, that is the unique solution of 
Fourier – Kirchhoff’s equation. The Stefan 
problems contain two categories: 

(A). Stefan problems of continuous type, 
corresponding to crystallization (solidification) 
respectively de-crystallization (smelting) of 
materials, slowly and in long time. From 
mathematical point of view that means to 
require that the thermal flux from the free 
frontier to be a continuous function in its 
points. 

(B).   Jump type Stefan problems, which 
appear when the crystallization, respectively 
the smelting produces quickly, in very short 
time and at very high temperature, that is the 
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thermal flux is discontinuous in the frontier’s 
points, that supposes to admits a jump. 

The EDM process is a  (B)  category 
process. From this reason the three conditions 
follow the formulation given in (B) case. 

a) Initial condition 
 

This condition shows the thermal 
field’s,  behavior at the t = 0 
moment. Therefore, we have to know a 
function   such that the restriction of 
T at   t = 0   coincides with w, that is:  

   (4.1) 
Generally,   is the environment’s 

temperature. 
 
b) Boundary value condition 

 
The boundary value condition for EDM 

process is of Neumann type. If  is the thermal 
flux, that is: 
                (4.2) 

 
  : ,  where  denotes 
the contact surface of the processed pieces with 
the thermal flux, specified in fig. 5.1.  

Therefore, is given a continuous 
function    such that the 
Neumann type boundary value condition is 
satisfied: 
        (4.3) 

where: 
      λ  –  is a given constant 
         – is the thermal field’s gradient 
            - denotes the outward normal at    
      -  the scalar product in   
 
    The theory of stability requires boundary 
value conditions, and these conditions have to 
be as accurate as possible relatively to the 
studied problem. For this reason we introduce 
spline functions. 
     In figure 4.1 a) and b) we represent these 
two Gauss and respectively spline functions 
and we can observe that for  can  
appear perturbation phenomena, of high level in 
Gauss case and very small ones in Spline case.  

      In these figures appear  and , 
representing the distribution radius of the 
thermal field, respectively its biggest radius. 
Therefore we have: 

                  =    0                             (4.4) 

c) Stefan’s boundary value condition 
of jump type (unconventional) 

 
As we already mentioned before, on the 

variable frontier , fig. 4.2, requires 
boundary value conditions, which are neither 
Dirichlet nor Neumann ones. 

If    and 
[ ] denotes the jump of  , then the condition 
on  is: 
                                    (4.5) 

where:   
            is an empiric constant, 
depending on the type of micro-smelted 
material and the intensity of the electric power 
applied in EDM process.  

In further applications following this new 
model we’ll stand out the possibilities to 
specify the constants , λ  and  . 

In the next figure, S* denotes the contact 
surface of the flux q* with the processed 
material, S(t) is the free frontier, ML represent 
the liquid material and ML the solid material. 

 
Fig. 4.2 The crater image with liquid and solid 

material 
 
5. CONCLUSIONS 

 
This paper constitutes base for further 

researches in domain of EDM. Taking account 
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the calculus complexities, produced by 
numerical formulas and procedures it’s obvious 
that they require performance software.  

We refer here, first of all to the Bessel’s 
function J0, but to the numerical procedures 
used in determination of the integration 
constants from the general solution, using 
conditions (4.1), (4.3) and (4.5). This research 
we’ll realize in further papers.  
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Studierea procesului E.D.M. folosind curbele spline cubic a regresiei problemei de tip Stefan 
 

Rezumat: Abrevierea EDM inseamna “Electrical Dischargte Machining” si se refera la indepartarea de material 
(micro topire) prin descarcari sub forma de scantei si plasma. Numeroasele aplicaţii ale acestui proces sunt in domeniul 
superfinisarii, micro gaurire, micro taieri. Decristalizarea in acest caz se face foarte rapid si la temperaturi foarte 
ridicate. Aceasta inseamna ca ne incadram in problema de tip  Stefan cu salt.. De aceea la frontiera libera a craterului 
produs prin eroziune electrica, este necesar ca fluxul sa nu transceanda la o valoare data. In cele mai multe cazuri este 
utilizata pentru distributia fluxul termic, o curba Gauss. Din cauza gradului ridicat de instabilitate a solutiei 
reprezentand  campul termic, conditiile la limita nu trebuie sa contina aproximari grosolane.  Functia Gauss devine nula 
numai in cazul in care raza craterului tinde la infinit. Dar e bine stiut ca raza craterului este forte mi, de aceea 
aproximarea fluzului printr-o functie Gauss nu poate fi nula. Eliminam acest neajuns prin inlocuirea functiei Gauss cu o 
functie de regresie cubic ate tip Spline, avand ca si directoare functia Gauss care devine nula care e derivabila la limita 
craterului. Cu toate ca modelul matematic este laborios, nu contine dificultati, considerand posibilitatile unor soft-uri 
numerice performante. 
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