W

581

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics and Mechanics

Vol. 54, Issue 1V, 2011

ACOUSTIC NORMAL MODES SIMULATION OF A CLASSROOM

Iulian LUPEA, Roxana TIBREA

Abstract: The acoustic of enclosed spaces continues to be an important issue in building acoustics, high
level of comfort in car habitacles of quality vehicles, industrial facilities and others. The management of
acoustic modal parameters plays an important roll in reaching the above targets. In this article the finite
element method is used to perform the acoustic normal modes analysis of a classroom, finding out the
resonant frequencies and the acoustic modes or the pressure distribution for each mode. The results are
compared to a set of values determined by a close related formula. The acoustic modes simulation is an
important step for the frequency response analysis and the acoustic optimization.
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1. INTRODUCTION

Many practical problems involve the
acoustic of enclosed spaces like rooms,
auditoria, concert halls, acoustic couplers for
calibrating microphones, car habitacles, tanks
and others [1], [5]. In such enclosures one can
highlight sound resonances at specific
frequencies and associated sound pressure
fields or acoustic mode shapes. A sound
resonance and the associated mode shape are
determining an acoustic normal mode of the
enclosure. In this situation we have to solve the
three dimensional wave propagation equation
[1], [2], [3], [4]:

?*p
or?
where p(x,y,z,t) is the deviation from the
ambient pressure,V?is the Laplace operator,

coz\/%[m/s] is the sound speed or the

longitudinal wave speed in air, K [Pa] is the
bulk modulus or the modulus of bulk elasticity
for gas mediums, measuring the air's resistance
to uniform compression and p is the air density.

For solving equation (1) we need to use the
proper boundary conditions imposed by the
walls of the classroom under study. The wall

=c3V?p (1)

surface acoustical properties are of great
interest in room acoustic. These properties are
completely characterized by the reflection
factor for all incidence angles and for the
frequency band of interest. The behavior of the
walls is well characterized by the wall
impedance, too. Wall impedance is based on
the particle normal to the wall velocity caused
by the sound wave pressure. The reflection
factor and the wall impedance are in general
complex values.

The Helmholtz equation with the boundary
conditions of the rigid walls becomes an
eigenvalue problem, resulting eigenvalues or
natural frequencies and eigenvectors.

For simple regular shapes, the natural
frequencies and the associated pressure fields
can be determined analytically. For more
complicated  enclosures only numerical
methods implemented in finite element or
boundary element solvers can help in solving
the eigenvalue problem.

2. NORMAL MODES IN A
RECTANGULAR ROOM

For a rectangular enclosure (/,,7,,1,) the

wave equation becomes:
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and the solution of the differential equation,
assuming separation of variables, takes the

form:

p(x,y,z,t)=p,(x)p,(¥)p.(2)-T(®)  (3)
The boundary conditions of the walls are
influenced by the acoustical impedance
z,=p/u, where p is the complex acoustic

pressure at the wall surface and u is the
complex particle velocity at the wall level. In
general, the acoustical impedance is complex,
having a real or resistive component collecting
the energy loss mechanisms and an imaginary
or reactive component which expresses the
potential energy stored in the air:
Zy = ZR +J21 “4)
For rigid walls the impedance is
infinite: z,, = oo, resulting zero the normal to the

wall (n) sound pressure gradient:

op _
%—0 &)
or:

8—p—O for x=0, x=1 (6a)
ax ) — Y — fxo
op _ _ _
5—0, Jor y=0, y=1,. (6b)
op _ —0 .-
E—O, fOl" Z—O, Z—lz. (6C)

The air particles velocity is zero at the rigid
walls level. By considering this situation on the
boundary surfaces we are in an undamped case
at which by increasing the impedance real part
we are adding damping.

One assumes a complex exponential for the
time dependent factor of the solution (3):

p(x,y,2,0) = p(x)p,(M)p.(2)- (7
where j=+/—1 and the circular frequencies ®
have to be determined.

By inserting the proposed solution (7) into
the equation (2), one get:

2

— d*p.(x)p, .
Taipx(x)lﬂympz(z) _ p.()rp, ()P (2)

dx?

+

d’p,(y)p,(x)p.(2) N d’p.(2)p,(X)p,(»)
dy* dz*
Dividing by p(x,y,z), results:

o dp(x) |

2" a o
0
d’p,(y) | d’p.(z) | (8)
d*  p,(») dz*  p.(2)
and for: o2 /cg —k2, )]
one get:
d’p.(x) 1 d’p,(y) | n
dx*  p.(x) a*  p,(»)
) (10)
d PZ2(Z) L 4 k2=0
dz p.(2)

The terms of the previous equation are
independent each to the other. Each term can be
equaled with a constant, in order from the list

—kZ, —ki, —k2, resulting:

2
LA | 2 (x)=0

7y (11a)
d’p,(»)
Ty2+k§py(y)=0 (11b)
42
TLE) 2y =0 g
dz
and the sum of the three constants equals k*:
ky 4k, +k: =k (12)

The solutions of the equations (11 a,b,c) are:

P (x)=C e’ +Cy e/ (13a)
ik —jk

p,(M=C e +Cy e (13a)

p.(2)=Ce +Cy e/ (132)

The solution (7) of the equation, becomes:
p=(C " +Cy ey
Jkyy —Jjk,y
'(Clye ; +C2ye ) (14)
. (Clzejkzz + sze—jkzZ) . eja)t

From the boundary conditions at x=0 indicating
a null pressure gradient at the rigid wall,
results:
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Dl 20 =q,=0, (5
oy =0

Pl _y =0, (15a)
Oz z=0

Replacing these constant relations in the
solutions (13), results:

Po(¥)=Cp (™ +e ) =2, cos(k,x) (16a)

P, (») =2C,, cos(k,y) (16b)

P (Z) = 2C12 COS(kZZ) (16C)

For the boundary condition at the opposite
wall, direction OX, results:

Psl 0 kosink)=0  (17)

1x™x
Ox x=l,

From this, and for all three directions, results:

kl.=nn, n,=012,.. (18a)
kyly =nn,, n,=012,. (18b)
kJl, =rxn,, n,=0]L12,.. (18c)

The sound pressure expression becomes a sum
of terms of the following type:

p(x,y,z)=
(19)

C : cos(ﬂlnx x) cos(ﬂlny ¥) cos(%z)

n,n,,0
X y z

where C

N, 0,0,

is the modal amplitude of the
acoustic mode, identified by the integer

numbers nx,ny,nz and x, y, z variables are

confined inside the rectangular room:

0<x<l, 0<y<l[, 0<z<l,

Finally, the pressure expression at the
position (x,),z) and moment #, can be written as
a summation of acoustic modes:

p(x,y,z,t)z z Z Z C”\,”v,”:'
n,=0n,=0n_=0 (20)
wn

Tn .
Z X x)cos( Z 2 y)cos( ”l”z z)e’”!

X y z
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583
From relations (9) and (12) where the

eigenvalue k2 (k=w/cy) is defined and
relation (18) results:

wn Tn
l J’)2+( l 2)2]1/2

NNy,

mn
@ =¢[( lx)2+(
X y z

The modal frequencies of the cavity in
function of the wave numbers are:

2

The acoustic modal analysis of the room
generates two parameter types: the mode
frequencies and the mode shapes.

Modes may be interpreted as sums of
interfering traveling waves.

Analytical solutions like those derived for
rectangular volumes can be obtained for
cylindrical and spherical volumes, as well.

In case of an irregular enclosure the nodal
planes become curved nodal surfaces.

For getting the acoustical normal modes of
the enclosure, all six walls have been
considered rigid. In this situation the particle
velocity is zero at the walls surfaces and the
pressure variation normal to the wall is null, as
well. At the walls level the waves are reflected
and standing pressure waves are generated.
These standing waves are considered the modes
shapes of the air in the cavity. The dissipation
of the modes energy, in case of the damping
presence, makes the modes amplitudes to
decrease and the same for the sound pressure in
the cavity. At the resonant frequency
determination one can starts with perfectly rigid
walls and the air without damping. Later the
modal damping is added like in the case of
structural modal analysis, frequency response
or transient response [7].

z

fnx,ny,n_. :c—o[(rll—x)2 _+_(’;_y)2 +(’;_2)2]1/2 Q1)
¥ y

3. NORMAL MODE SIMULATION BY
USING FEA

3.1. The model set-up

The geometry of the enclosure has been
designed by using CAD. Based on the surfaces
the mesh has been generated [8]. In order to
model the system under observation the CAD
model of the air envelope has been created first.
The classroom interior side of the walls and the
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windows are meshed by using triangular 16 2 0 1 5130 52,5 -2,29%
shell elements. These are structural nodes, each 17 1 1 1 5249 529 -0.82%
one with six degrees of freedom, three 18 2 1 1 5609 552 1,60%
translational and three rotational. The interior 193 2 0 5680 563 0’932/0
volume of the classroom occupied by the air is 20 5 00 5705 568 0:45%

. 21 3 0 1 57,29 59,5 -3,64%

meshed by using tetrahedral volume elements, a 2 5 1 0 6139 596 3.05%
. s 5 5 o

ﬁxed‘mesh proper for the fluids [8]. Each node 23 03 1 1 6162 627 -1.65%
of air has Ol’lly one degree of freedom, 24 4 2 0 64,33 63 2,19%
expressing the pressure at that location. The 25 0 2 1 6455 63,6 1,49%
boundary conditions for the air are imposed by 26 4 0 1 6476 644 0,50%
the structural nodes of the surrounding 27 1 2 1 65,55 66 -0,75%
structure. The maximum number of the acoustic 28 0 3 0 6800 669 1,58%
modes to be modeled is dictated by the mesh 29 6 0 0 6846 682 042%
size. At least six elements per wavelength are 30 22 1 6846 685 -0,03%
recommended. The mesh density of the 314 116861 69,1 '0’682/"
acoustic model should be able to predict modes 321306895 694 -0,58%
33 2 3 0 71,73 703 1,99%

up to the upper bound of the frequency of 34 6 1 0 7211 71 1.56%
mnterest. 3505 2 0 7287 718  1,50%

The material model MATI10 has been used 36 3 2 1 73,06 729 0,26%
to model the air. The following parameters are 37 5 0 1 7325 73,6 -049%
requested in the general case: the bulk modulus, 38 3 3 0 76,13 73,9 3,02%
the mass density, the speed of sound, the fluid 39 5 1 1 7668 76,7 0,02%
element damping coefficient and the
normalized admittance coefficient for porous The eigenvalues distribution is depicted in
material. Fig. 1. The wvalues are evenly distributed

indicating a relatively good room design.
20

3.2. Modal frequencies of the cavity

| Hz
The normal modal analysis, by using %
Optistruct [8], has been run to identify the ;z
structure natural frequencies and the associated o
acoustic mode shapes. A first set of natural 0l
frequencies resulted, are listed in Table 1. 20 |
Table 1 204
Comparison rectangular vs. room (FEA) 10
Rectan 0]'1'5‘1‘=‘=H'HHHHHHHHHHH t
Mode# ny ny n, gular FEA Diff. 135 7 9 11131517 18 21 23 25 27 29 31 33 35 37 39
1 1 0 0 1 1,41 1 1,3 1,05% Frequency no.
§ g (1) g ;iag; ;g,i }’2 g ?;’ Fig. 1. Modal frequencies distribution
b b 2 0
2 ; } g igﬂi’g ?1‘,2 é’?i?;) One can observe the axial modes of the types
b b 2 0 .
6 3 0 0 3423 348 -1.59% (nx, 0, 0), (0, ny, 0) or (0, 0, nz), the tangential
7 3 1 0 4105 41,5 -096% modes of the types (nx, ny, 0), (nx, 0, nz) or (0,
8 0 2 0 4533 441 287% ny, nz) and the oblique or tree-dimensional
V)
lg g 8 (1) j?gi 22’2 (2)’43‘2 ;’ modes (nx, ny, nz) in which all of the indices nx,
b b 2 o
11 1 2 0 46,75 46,9 _0’39% ny and nz are non-zero.
12 1 0 1 4734 48,8 -3,01% Often it is of interest to find out the density of
ii i % g 28’;2 495,(3) %gfz’ the eigenfrequencies in a specific frequency band
5 0 1 1 51’23 516 _0’79(;; like an octave or an octave fraction.



3.3. The modal pressure distribution
The first acoustic mode (an axial mode) [100]
is along OX axis, obtained at 11.3 Hz (Fig. 2).

Mode 1
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Fig. 3. Mode 2: 22,3Hz [0 1 0]

This is normal considering that / >/ and
[, >1, . Zero pressure surface is about at the

middle section of the length /, of the classroom.

Contour Plot

Preseurs[Presars)
-3 078E-D -

Prescure|Fressure)

3.078E-07
E?A —

17458
— 1 07

Fig. 4. Mode 3: 22.4Hz [2 0 0]

The frequency of 22.4 Hz associated to the
second axial mode along OX axis [200] shown in
figure 4, is very close to the frequency of 22.3

585
Hz associated to the first axial mode (along
OY axis [010] (Fig. 3). For the mode 3 [200], the
pressure distribution and the two zero pressure
surfaces, can be seen in figure 4. These two

Fig. 5. Mode #4 [1 1 0]
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surfaces are deformed because of the details of
the classroom. For a parallelepiped enclosure
these two surfaces would be planar. The
maximum pressure is located at the two opposite
walls, following the relation:

P(x) =cos(27r X)

Ca00 [

The first tangential mode [110] (Fig. 5) was
obtained at 24.9 Hz. The maximal pressure is
located at the two opposite corners.

The first axial mode [001] along the OZ axis
or the height of the classroom is depicted in
figure 6, where one can see the zero pressure
surface. The associated frequency was obtained
at 45.8Hz.

Another tangential acoustic mode has two
zero pressure surfaces along OX direction and
one null pressure along OY direction [210] (Fig.
7). A much higher oblique acoustic mode [331]
is depicted in figure 8. For such a mode the
particle velocity has components on all three
coordinate axes. The reflections cover all six
walls. The higher the mode the more
complicated the pressure distribution is.

4. CONCLUSIONS

The acoustic modes of a classroom has
been observed from analytical and simulation
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points of view. The values of the
fundamental resonant frequencies calculated by
using the relation (21) and the values resulted
from simulation are in good agreement. The

Fig. 7. Mode #5, [2 1 0]: 31.5Hz
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Fig. 8. Mode [33 1]

free oscillations problem or the homogeneous
problem has been observed in the paper. In this
case we had initial conditions to start
oscillations, the boundary conditions were for
perfectly rigid walls and no damping in the air
and at the walls.

Often in the room we have sound sources.
In this case forced oscillations are generated.
When the source is a pure tone at a specific
frequency only that frequency can be observed
in the room. An acoustic mode can be excited
when the frequency of the source fits a natural

frequency of the classroom or is close to it. The
excitation is depending, as well, on the position
of the source in relation to the nodes or the
antinodes of the pressure distribution.

The acoustic modal analysis by using finite
elements is a good and confident approach in
observing acoustic systems with applications.
Further studies will observe the frequency
response and the pressure distribution as a
response to the human voice.
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Analiza modala acusticd a unei sili de cursuri folosind elemente finite
Rezumat: in lucrare sunt determinati prin simulare parametrii modali ai unei sali de cursuri. Se considerd modelarea
geometrica a salii, discretizarea peretilor si a volumului de aer. Folosind solverul Optistruct, se extrag frecventele
naturale si modul de distributie a presiunii pentru fiecare mod acustic. Valorile provenite din simulare sunt comparate
cu cele calculate folosind o relatie obtinuta analitic, pentru o sald asimilatd cu un paralelipiped. Sunt facute aprecieri si

formulate concluzii asupra fenomenului studiat.
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