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Iulian LUPEA,   Roxana TIBREA 
 

Abstract: The acoustic of enclosed spaces continues to be an important issue in building acoustics, high 
level of comfort in car habitacles of quality vehicles, industrial facilities and others. The management of 
acoustic modal parameters plays an important roll in reaching the above targets. In this article the finite 
element method is used to perform the acoustic normal modes analysis of a classroom, finding out the 
resonant frequencies and the acoustic modes or the pressure distribution for each mode. The results are 
compared to a set of values determined by a close related formula. The acoustic modes simulation  is an 
important step for the frequency response analysis and the acoustic optimization. 
Keywords: room acoustic, finite elements, acoustic normal modes. 
 
 

1. INTRODUCTION   
  
 Many practical problems involve the 
acoustic of enclosed spaces like rooms, 
auditoria, concert halls, acoustic couplers for 
calibrating microphones, car habitacles, tanks 
and others [1], [5]. In such enclosures one can 
highlight sound resonances at specific 
frequencies and associated sound pressure 
fields or acoustic mode shapes. A sound 
resonance and the associated mode shape are 
determining an acoustic normal mode of the 
enclosure. In this situation we have to solve the 
three dimensional wave propagation equation 
[1], [2], [3], [4]:  
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where p(x,y,z,t) is the deviation from the 
ambient pressure, 2∇ is the Laplace operator, 

ρ
Kc =0 [m/s] is the sound speed or the 

longitudinal wave speed in air, K [Pa] is the 
bulk modulus or the modulus of bulk elasticity 
for gas mediums, measuring the air's resistance 
to uniform compression and ρ is the air density. 
 For solving equation (1) we need to use the 
proper boundary conditions imposed by the 
walls of the classroom under study. The wall 

surface acoustical properties are of great 
interest in room acoustic. These properties are 
completely characterized by the reflection 
factor for all incidence angles and for the 
frequency band of interest. The behavior of the 
walls is well characterized by the wall 
impedance, too. Wall impedance is based on 
the particle normal to the wall velocity caused 
by the sound wave pressure. The reflection 
factor and the wall impedance are in general 
complex values. 
 The Helmholtz equation with the boundary 
conditions of the rigid walls becomes an 
eigenvalue problem, resulting eigenvalues or 
natural frequencies and eigenvectors. 
 For simple regular shapes, the natural 
frequencies and the associated pressure fields 
can be determined analytically. For more 
complicated enclosures only numerical 
methods implemented in finite element or 
boundary element solvers can help in solving 
the eigenvalue problem.  
 
2. NORMAL MODES IN A 
RECTANGULAR ROOM 
 

For a rectangular enclosure ( zyx lll ,, ) the 
wave equation becomes: 
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and the solution of the differential equation, 
assuming separation of variables, takes the 
form: 

)()()()(),,,( tTzpypxptzyxp zyx ⋅=        (3)  
The boundary conditions of the walls are 
influenced by the acoustical impedance 

upzw /= , where p is the complex acoustic 
pressure at the wall surface and u is the 
complex particle velocity at the wall level. In 
general, the acoustical impedance is complex, 
having a real or resistive component collecting 
the energy loss mechanisms and an imaginary 
or reactive component which expresses the 
potential energy stored in the air: 

IRw jzzz +=                         (4) 
 For rigid walls the impedance is 
infinite: ∞=wz , resulting zero the normal to the 
wall (n) sound pressure gradient: 
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or: 
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 The air particles velocity is zero at the rigid 
walls level. By considering this situation on the 
boundary surfaces we are in an undamped case 
at which by increasing the impedance real part 
we are adding damping.  
 One assumes a complex exponential for the 
time dependent factor of the solution (3): 

tj
zyx ezpypxptzyxp ω⋅= )()()(),,,(      (7) 

where 1−=j  and the circular frequencies ω 
have to be determined.  
 By inserting the proposed solution (7) into 
the equation (2), one get: 
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Dividing by p(x,y,z), results: 
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and for: 22
0/2 kc =ω ,                                         (9) 

one get: 
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The terms of the previous equation are 
independent each to the other. Each term can be 
equaled with a constant, in order from the list 

222 ,, zyx kkk −−− , resulting:  
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and the sum of the three constants equals k2: 
2222 kkkk zyx =++ .                (12) 

The solutions of the equations (11 a,b,c) are: 
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The solution (7) of the equation, becomes: 
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From the boundary conditions at x=0 indicating 
a null pressure gradient at the rigid wall, 
results:  
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 Replacing these constant relations in the 
solutions (13), results: 
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)cos(2)( 1 ykCyp yyy =                    (16b) 

)cos(2)( 1 zkCzp zzz =                     (16c) 

 For the boundary condition at the opposite 
wall, direction OX, results: 
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From this, and for all three directions, results: 

,...2,1,0, == xxxx nnlk π              (18a) 

,...2,1,0, == yyyy nnlk π              (18b) 

,...2,1,0, == zzzz nnlk π               (18c) 

The sound pressure expression becomes a sum 
of terms of the following type: 
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where 
zyx nnnC ,, is the modal amplitude of the 

acoustic mode, identified by the integer 
numbers znynxn ,,  and x, y, z variables are 

confined inside the rectangular room: 

xlx ≤≤0 ,  yly ≤≤0 ,  zlz ≤≤0  

Finally, the pressure expression at the 
position (x,y,z) and moment t, can be written as 
a summation of acoustic modes: 
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From relations (9) and (12) where the 
eigenvalue 2k  ( 0/ ck ω= ) is defined and 
relation (18) results: 
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The modal frequencies of the cavity in 
function of the wave numbers are: 
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The acoustic modal analysis of the room 
generates two parameter types: the mode 
frequencies and the mode shapes. 

Modes may be interpreted as sums of 
interfering traveling waves. 

Analytical solutions like those derived for 
rectangular volumes can be obtained for 
cylindrical and spherical volumes, as well. 

In case of an irregular enclosure the nodal 
planes become curved nodal surfaces.    

For getting the acoustical normal modes of 
the enclosure, all six walls have been 
considered rigid. In this situation the particle 
velocity is zero at the walls surfaces and the 
pressure variation normal to the wall is null, as 
well. At the walls level the waves are reflected 
and standing pressure waves are generated. 
These standing waves are considered the modes 
shapes of the air in the cavity. The dissipation 
of the modes energy, in case of the damping 
presence, makes the modes amplitudes to 
decrease and the same for the sound pressure in 
the cavity. At the resonant frequency 
determination one can starts with perfectly rigid 
walls and the air without damping. Later the 
modal damping is added like in the case of 
structural modal analysis, frequency response 
or transient response [7]. 

    
  3. NORMAL MODE SIMULATION BY 
USING FEA   
  
3.1. The model set-up  
 The geometry of the enclosure has been 
designed by using CAD. Based on the surfaces 
the mesh has been generated [8]. In order to 
model the system under observation the CAD 
model of the air envelope has been created first. 
The classroom interior side of the walls and the 
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windows are meshed by using triangular 

shell elements. These are structural nodes,  each 
one with six degrees of freedom, three 
translational and three rotational. The interior 
volume of the classroom occupied by the air is 
meshed by using tetrahedral volume elements, a 
fixed mesh proper for the fluids [8]. Each node 
of air has only one degree of freedom, 
expressing the pressure at that location. The 
boundary conditions for the air are imposed by 
the structural nodes of the surrounding 
structure. The maximum number of the acoustic 
modes to be modeled is dictated by the mesh 
size. At least six elements per wavelength are 
recommended. The mesh density of the 
acoustic model should be able to predict modes 
up to the upper bound of the frequency of 
interest.  
 The material model MAT10 has been used 
to model the air. The following parameters are 
requested in the general case: the bulk modulus, 
the mass density, the speed of sound, the fluid 
element damping coefficient and the 
normalized admittance coefficient for porous 
material. 

     
3.2. Modal frequencies of the cavity 

The normal modal analysis, by using 
Optistruct [8], has been run to identify the 
structure natural frequencies and the associated 
acoustic mode shapes. A first set of natural 
frequencies resulted, are listed in Table 1. 

 Table 1 
Comparison rectangular vs. room (FEA)  

Mode# nx ny nz 
Rectan 

gular FEA Diff. 
1 1 0 0 11,41 11,3 1,05%
2 0 1 0 22,67 22,3 1,55%
3 2 0 0 22,82 22,4 1,83%
4 1 1 0 25,38 24,9 1,95%
5 2 1 0 32,16 31,5 2,14%
6 3 0 0 34,23 34,8 -1,59%
7 3 1 0 41,05 41,5 -0,96%
8 0 2 0 45,33 44,1 2,87%
9 4 0 0 45,64 44,5 2,49%

10 0 0 1 45,95 45,8 0,36%
11 1 2 0 46,75 46,9 -0,39%
12 1 0 1 47,34 48,8 -3,01%
13 2 2 0 50,75 49,3 2,88%
14 4 1 0 50,96 50 1,91%
15 0 1 1 51,23 51,6 -0,79%

16 2 0 1 51,30 52,5 -2,29%
17 1 1 1 52,49 52,9 -0,82%
18 2 1 1 56,09 55,2 1,60%
19 3 2 0 56,80 56,3 0,93%
20 5 0 0 57,05 56,8 0,45%
21 3 0 1 57,29 59,5 -3,64%
22 5 1 0 61,39 59,6 3,05%
23 3 1 1 61,62 62,7 -1,65%
24 4 2 0 64,33 63 2,19%
25 0 2 1 64,55 63,6 1,49%
26 4 0 1 64,76 64,4 0,50%
27 1 2 1 65,55 66 -0,75%
28 0 3 0 68,00 66,9 1,58%
29 6 0 0 68,46 68,2 0,42%
30 2 2 1 68,46 68,5 -0,03%
31 4 1 1 68,61 69,1 -0,68%
32 1 3 0 68,95 69,4 -0,58%
33 2 3 0 71,73 70,3 1,99%
34 6 1 0 72,11 71 1,56%
35 5 2 0 72,87 71,8 1,50%
36 3 2 1 73,06 72,9 0,26%
37 5 0 1 73,25 73,6 -0,49%
38 3 3 0 76,13 73,9 3,02%
39 5 1 1 76,68 76,7 0,02%

 
 The eigenvalues distribution is depicted in 
Fig. 1. The values are evenly distributed 
indicating a relatively good room design. 

One can observe the axial modes of the types 
(nx, 0, 0), (0, ny, 0) or (0, 0, nz), the tangential 
modes of the types (nx, ny, 0), (nx, 0, nz) or (0, 
ny, nz) and the oblique or tree-dimensional 
modes (nx, ny, nz) in which all of the indices nx, 
ny and nz are non-zero.  
 Often it is of interest to find out the density of 
the eigenfrequencies in a specific frequency band 
like an octave or an octave fraction.  

Fig. 1. Modal frequencies distribution 
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3.3. The modal pressure distribution 

The first acoustic mode (an axial mode) [100] 
is along OX axis, obtained at 11.3 Hz (Fig. 2). 

This is normal considering that yx ll > and 

zx ll > . Zero pressure surface is about at the 
middle section of the length xl  of the classroom.

 The frequency of 22.4 Hz associated to the 
second axial mode along OX axis [200] shown in 
figure 4, is very close to the  frequency of 22.3 

Hz associated to the first axial mode (along 
OY axis [010] (Fig. 3). For the mode 3 [200], the  
pressure distribution and the two zero pressure 
surfaces, can be seen in figure 4. These two 

surfaces are deformed because of the details of 
the classroom. For a parallelepiped enclosure 
these two surfaces would be planar. The 
maximum pressure is located at the two opposite 
walls, following the relation:  

)2cos()(

0,0,2
x

lC
xp

x

π
=  

 The first tangential mode [110] (Fig. 5) was 
obtained at 24.9 Hz. The maximal pressure is 
located at the two opposite corners. 
 The first axial mode [001] along the OZ axis 
or the height of the classroom is depicted in 
figure 6, where one can see the zero pressure 
surface. The associated frequency was obtained 
at  45.8Hz.  
 Another tangential acoustic mode has two 
zero pressure surfaces along OX direction and 
one null pressure along OY direction [210] (Fig. 
7). A much higher oblique acoustic mode [331] 
is depicted in figure 8. For such a mode the 
particle velocity has components on all three 
coordinate axes. The reflections cover all six 
walls. The higher the mode the more 
complicated the pressure distribution is. 
 
4. CONCLUSIONS  
 

  The acoustic modes of a classroom has 
been observed from analytical and simulation 

Fig. 4. Mode 3: 22.4Hz  [2 0 0]  

Fig. 6. Mode 10: 45,8Hz [0 0 1] 

Fig. 5. Mode #4 [1 1 0] 

Fig. 3. Mode 2: 22,3Hz [0 1 0] 

Fig. 2. Mode 1: 11,3 Hz [1 0 0] 
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points of view. The values of the 

fundamental resonant frequencies calculated by 
using the relation (21) and the values resulted 
from simulation are in good agreement. The 

free oscillations problem or the homogeneous 
problem has been observed in the paper. In this 
case we had initial conditions to start 
oscillations, the boundary conditions were for 
perfectly rigid walls and no damping in the air 
and at the walls.  

 Often in the room we have sound sources. 
In this case forced oscillations are generated. 
When the source is a pure tone at a specific 
frequency only that frequency can be observed 
in the room. An acoustic mode can be excited 
when the frequency of the source fits a natural 

frequency of the classroom or is close to it. The 
excitation is depending, as well, on the position 
of the source in relation to the nodes or the 
antinodes of the pressure distribution.  

The acoustic modal analysis by using finite 
elements is a good and confident approach in 
observing acoustic systems with applications. 
Further studies will observe the frequency 
response and the pressure distribution as a 
response to the human voice. 
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Analiza modală acustică a unei săli de cursuri folosind elemente finite 

Rezumat: În lucrare sunt determinaţi prin simulare parametrii modali ai unei săli de cursuri. Se consideră modelarea 
geometrică a sălii, discretizarea pereţilor şi a volumului de aer. Folosind solverul Optistruct, se extrag frecvenţele 
naturale şi modul de distribuţie a presiunii pentru fiecare mod acustic. Valorile provenite din simulare sunt comparate 
cu cele calculate folosind o relaţie obţinută analitic, pentru o sală asimilată cu un paralelipiped. Sunt făcute aprecieri şi 
formulate concluzii asupra fenomenului studiat. 
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Fig. 7. Mode #5, [2 1 0]: 31.5Hz  

Fig. 8. Mode [3 3 1] 


