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Abstract: The automakers are continuously interested in NVH solutions for high quality vehicles. The 
dynamics of a tire, which is excited mainly from the road, is under observation. In this paper the modal 
parameters of an inflated tire are determined by using finite element analysis. The natural frequencies 
and the modal vectors of the prestressed structure for a couple of pressure values are presented. The 
pressure influence on the natural frequencies can be assessed. Further studies will observe the 
experimental modal analysis and the frequency response analysis of the structure.  
Keywords: inflated tire, modal analysis, modal parameters. 
 
 

1. INTRODUCTION   
  

Two important issues that appear when 
engineers are confronting with automotive 
design are improving the vehicle’s dynamics 
and NVH (Noise, Vibration and Harshness) 
refining. The wheels are one important target 
when dealing with these problems because they 
have the role of sustaining the vehicle and 
responding the maneuvers of the driver on the 
road [9]. As a consequence they are, along with 
the engine, the main sources of vibrations when 
are dynamically excited by the unevenness of 
the road, or by braking, steering and 
accelerating the vehicle [4]. 

Modal analysis is a good method to 
formulate a mathematical model for the 
dynamic behavior of the wheel. It consists on 
the process of determining its inherent dynamic 
characteristics like natural frequencies, 
damping factors and mode shapes in order to 
build the modal model. 

There are theoretical models based on the 
physics of the tire construction, and empirical 
models which are based on experimental data. 

One simple, yet reliable theoretical model, 
was conceived by Zagelaar [11] and it consists 
of a rigid ring that represents the thread-band, 
which is suspended on translational and 

rotational springs and dampers representing the 
tire sidewalls and the pressurized air inside, 
which are linked to a smaller rigid ring 
representing the rim. This model can only 
simulate the low frequency in-plane rigid 
modes of the tire, which means that the thread-
band keeps its circular shape and the 
movements consist in rotational (Fig. 1), a 
horizontal and a vertical displacement of the 
ring (Fig. 2). Such a simple model is mostly 
used for studying the ride and comfort of 
vehicles in the low and medium frequency 
range (0-100Hz) 

However, when studying the dynamic 
behavior of the tire at higher frequencies, a 
model that simulates a more complex 
deformation is needed. As a consequence, in 
general a finite element model is being 
introduced for performing modal analysis. 

Fig. 1. Rotational modes (in plane) 



 

 

588 
Brinkmeier et al. describe [1] this kind of 

approach for determining the radiating noise 
produced by a rolling tire. To predict the 
dynamic forces exerted on the tire axis, an 

analysis of a 3-D tire model with finite 
elements passing over an obstacle is studied by 
Cho et al. in their work [2]. The effects of the 
inflating pressure and rolling speed are taken 
into account during these investigations. 
 Finite elements analysis is also being used 
for examining the contact pressures between 
the tire and the road for different thread 
patterns [3], or to validate a FEM model of a 
tire by simulating several test procedures in 
order to be used in future vehicle dynamics 
analysis [7]. 
 

2. THE FINITE ELEMENT MODEL  
 
Sheet metal wheels are mounted on most of 

the cars because they are economic, they have a 
high stress limit and can be easily serviced. 
They are constructed from two distinguished 
parts, the rim and the wheel disc (attachment 
face) and then welded together. 

The material from which they are fabricated 
is a cold-formable sheet metal or band steel, 
with a high elongation and thicknesses from 1.8 
to 4.0 mm for the rim and 3.0 to 6.5 mm for the 
disc, depending on the wheel loads. 

The metal plate from which the rim is 
fabricated comes in a rectangular form, and 
then is bent to produce a cylindrical sleeve with 
two free edges which will be welded 
afterwards. To give the sleeve the 
corresponding thickness profile it follows at 
least one cylindrical flow spinning operation 
followed by calibration.  
 The steel disc is obtained by stamping a 
metal plate. It has to have appropriate holes for 

fitting the center hub and the bolts which will 
fasten the wheel to the hub. The disc can be 
perforated also for purposes like better brake 
cooling or just reducing weight. Also many 
strength requirements are placed on the wheel 
disc because it has to absorb vertical, lateral 
and longitudinal forces coming from the road 
and to transfer them to the wheel through the 
fixing bolts. 

 Starting from the surfaces of the 
geometry the mesh, mainly based on shell 
elements, has been done. The tire size is 
185/65/R15 (tire width [mm]/ratio of the tire 
height to width [%]/ rim diameter [inch]. The 
height of the sidewall of the tire is 65% of the 
width (120.25 mm). The cylindrical rim 
structure is supported by a central disc made by 
stamping. This part has appropriate holes for 
the center hub and lug nuts. The outer surface 
of the wheel disc has a cylindrical portion to 
support the connection to the rim. Both, the rim 
and the central disc are modeled by using shells 

and the material assigned is steel: Young 
modulus: 2.1e5MPa, Poisson ratio of 0.3, the 
density 7.9e-9tons/mm3. The rim and the disc 
thickness values are 2.3mm and 4.2 mm 
respectively. The rubber material for this study 
is considered as isotropic E=200MPa, Poisson 
ratio ν=0.49, density ρ=2.1e-9 and 
thickness=6.24mm 

  
  3. NORMAL MODE ANALYSIS OF THE 
PRELOADED SYSTEM   
  
3.1. The prestressed eigenvalue analysis  
 The dynamical equations of some 
mechanical systems [5], [6] can be written in a 
matrix form (1), as follows: 

FKQQCQM =++ &&&                     (1) 

Fig. 3. The wheel mesh layout 

Fig. 2. Translational modes (in plane) 
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where Q is the vector of the system generalized 
coordinates (system degrees of  freedom), M, 
C, K are the mass (inertia), viscous damping 
and stiffness matrices and F is the vector of 
generalized forces. The matrices M, C and K 
are considered symmetrical, with n x n 
elements.  
 When doing the normal mode analysis of the 
system, the damping is neglected and the 
external forces are not acting, resulting (2): 

0=+ KQQM &&                              (2) 
 Assuming a harmonic and synchronous 
motion in the structure, when all coordinates 
perform in time the motion in phase or out of 
phase, the following solution is proposed: 

)cos()( ϕω −⋅= tutQ                       (3) 
where ω is considered the natural frequency of 
the whole system and u is a constant n–vector 
of amplitudes.  
 By replacing the proposed solution in the 
system of differential equations, results: 

 0)(0 22 =⋅−=− uMKorMuKu ωω        (4) 
 The set of the homogeneous algebraic 
equations (4) has the unknown vector u. 
Considering 2ωλ = as a parameter, one gets: 

MuKu λ=                                (5) 
known as the eigenvalue problem when trying 
to determine λ values for which the system (4) 
has nontrivial solutions. By solving for λ and 
nontrivial solution (u≠0), the following 
characteristic equation (6) is obtained: 

0)det( =− MK λ                   (6) 
where λr (r=1,2…,n) values are the eigenvalues 
(or characteristic values) of the system. The 
natural frequencies of the system are derived: 

nrf rr ,...2,12/ == πλ               (7) 
 For each determined eigenvalue λr , a vector 
ur (r=1,2…,n) named eigenvector, defining the 
associated mode shape of vibration is 
calculated. ur is satisfying the following 
equation: 

nrMuKu rrr ,...,2,1== λ                 (8) 
 In case of a preloaded structure like the one 
under observation the stiffness matrix becomes: 

PLKKK −= 0      (9) 
where the preloading is defined or included in 
the matrix PLK . The relation (5) becomes: 

uMuKK PL λ=− )( 0    (10) 
or: 

0)( 0 =−− uMKK PL λ  
The matrix PLK  has to be determined in an 
initial static analysis case of the type: 

FUKK PL =− 00 )(      (11) 
where 0U  and F  are the static deformation of 
the structure and the external preloading force 
respectively. 
 
3.2. Natural frequencies of the system 

The normal modal analysis, by using 
Optistruct [12], has been applied to identify the 
structure natural frequencies and the associated 
mode shapes. The tire is constrained by using 
four bolts at the central area. The recommended 
tire pressures are 1.9 and 2.1 bars for the front 
and the rear tires respectively. For the structure 
critical locations the strain energy distribution 
has been observed. The natural frequencies for a 
pressure of 0.2MPa are listed in Table 1. 

Table 1 
Natural frequencies of the tire 

Mode 
# 

Frequency 
(Hz) 

Mode 
# 

Frequency 
(Hz) 

1 18.6 16 186.8
2 51.5 17 186.8
3 70.1 18 191.3
4 70.1 19 191.4
5 128.9 20 206.7
6 129.4 21 206.8
7 142.2 22 207.4
8 142.2 23 207.4
9 151.8 24 216.0

10 151.8 25 229.1
11 167.3 26 229.1
12 167.3 27 240.8
13 173.6 28 240.9
14 180.2 29 250.3
15 181.6 30 250.3

 
3.3. Mode shapes 
 The first mode shape, depicted in figure 4, is 

Fig. 4. Mode shape #1 
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characterized by the rotation of the outer zone 

of the tire (red area) in the wheel plane, around 
the wheel axis. All figures presented in the 
sequel are showing the displacement associated 
to the mode shapes. The steel is much more rigid 
in comparison to the rubber, consequently the 
displacement is reduced, the central area being in 

dark blue colour.  

 In the second mode of vibration the tire is 
moving out of the wheel plane and along the 
wheel axis (Fig. 5). Both, the deformed 
(amplitude) and the undeformed shape of the 
system for this mode can be observed.  
 In the third and the fourth modes the tire is 

moving out of the wheel plane, rotating around 
an axis found in the wheel plane (Fig. 6). 

 Figure 7 is presenting the fifth mode from 
two viewpoints, a side one and a top view. The 
movement is mainly axial. Two diametric 
opposite zones are moving out of phase to the 

Fig. 8. Mode shape #7,#8 

Fig. 9. Mode #13 

Fig. 10. Radial lobes 

Fig. 11. Multiple radial lobes 

Fig. 5. Mode shape #2 

Fig. 6. Modes #3 and #4 

Fig. 7. Mode shape #5 
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other perpendicular and diametric opposite 
zones. 
 The modes number seven and eight are 
similar and are depicted in figure 8. Mode #13 
is depicted in figure 9. Both the deformed and 
wire frame undeformed structures are 
visualized.  
 As long as the mode and the associated 
frequency are higher, the associated mode 
shape is more complicated deformed presenting 
an increasing number of lobes like the modes 
depicted in figures 10 and 11.   
 
3.4. The pressure variation influence on the 
natural frequencies 
 The natural frequencies are influenced by 
the degree of the structure pretension as we can 
see, as well, from the relations (10) and (11).   
 The finite element analysis has been applied 
multiple times by considering each time a 
different tire pressure and hence a different 
prestressed tire structure. The tire pressure list 
of values is 0.18, 0.2, 0.22, 0.24 [MPa]. The 
results are centralized in Table #2. 
 

Table 2 
Natural frequencies variation with pressure 

 Natural Frequencies [Hz] 
Mode 

# 
0.18 
MPa 

0.2 
MPa 

0.22 
MPA 

0.24 
MPA 

1 17.7 18.6 19.3 20.1
2 49.8 51.5 53.1 54.6
3 68.9 70.1 71.2 72.4
4 68.9 70.1 71.3 72.4
5 127.9 128.9 129.9 130.9
6 128.3 129.4 130.4 131.4
7 140.9 142.2 143.4 144.6
8 141.0 142.2 143.5 144.7
9 149.9 151.8 153.6 155.4

10 149.9 151.8 153.7 155.4
11 164.6 167.3 169.9 172.3
12 164.7 167.3 169.9 172.4
13 171.7 173.6 175.3 177.0
14 178.7 180.2 181.8 183.3
15 180.1 181.6 183.1 184.6

 
 As we can see from the results gathered in  
Table 2, the variation of the frequency for the 
same frequency mode is within 2 to 5 Hz for a 
pressure variation of 0.6 MPa. An experimental 
modal analysis has to be done for the 
simulation validation. 

4. CONCLUSION  
  

The modal analysis of an inflated tire is 
important for the tire dynamics, revealing the 
resonant frequencies and the associated 
eigenmodes complexity of the structure. For the  
tire size of 185/65/R15, the variation of these 
frequencies as a consequence of the tire 
pressure variation has been observed. This task 
has been accomplished by using the finite 
element simulation. 
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Analiză modală aplicată unei anvelope folosind metoda elementelor finite 

 
Rezumat: În lucrare sunt determinaţi parametrii modali ai unei roţi de automobil prin analiză cu elemente finite. 
Deoarece diferenţa de rigiditate dintre anvelopă şi jantă este mare, modurile de frecvenţă mai joasă vor presupune în 
primul rând deplasarea anvelopei. La început este determinată starea de tensiuni a roţii ca urmare a presiunii aerului din 
anvelopă. In a doua etapă sunt calculate frecvenţele naturale şi modurile de vibraţie ale structurii pretensionate. In 
continuare este observată variaţia frecvenţelor naturale în raport cu variaţia presiunii din pneuri. 
 

PRE-STRESSES TYRE MODAL ANALYSIS 
 
SUBCASE       1 
  SPC =        3 
  LOAD =        2 
SUBCASE       2 
  SPC =        3 
  METHOD(STRUCTURE) =        1 
STATSUB(PRELOAD)  =  1                                                           
$ 
BEGIN BULK 
GRID     6600040        2724.98639.17379215.7784                         
GRID     6608089        2903.16496.76384149.8047                         
$$ 
$ RBE2 Elements - Multiple dependent nodes 
$ 
RBE2        8122 6608084  123456 6600126 6600127 6600199 6600291 6600292 
+        6600293 6600337 6600341 6600342 6604529 6605606 6605608 6605610 
+        6605614 6605932 6605934 6605935 6605936 6607930 6607933 
. . . .  
RBE2        8126 6608087  123456 6600413 6606180 6606183 6606839 6607928 
+        6607929 
CTRIA3        66       3 6607943 6607945 6607944                 
. . . .  
CTRIA3      5206       6 6606141 6602188 6606139                 
$ 
CQUAD4        59       2 6607963 6607960 6607961 6607962                 
CQUAD4      8100       1 6603540 6600043 6603534 6604916                 
CQUAD4      8101       1 6603539 6603535 6603534 6600042                 
$                                                                               
$HMNAME PROP                   1"PNEU_D" 4 
PSHELL         1  6600126.24      660012          660012        0.0      
$HMNAME PROP                   2"ZONE_RECOUVREMENT_D" 4 
PSHELL         2  6600116.5       660011          660011        0.0      
$HMNAME PROP                   3"DISQUE_DE_ROUE_D" 4 
PSHELL         3  6600114.2       660011          660011        0.0      
$HMNAME PROP                   4"JANTE_DE_ROUE_D" 4 
PSHELL         4  6600112.3       660011          660011        0.0      
$HMNAME PROP                   5"EVENTS_D" 4 
PSHELL         5  6600126.24      660012          660012        0.0      
$HMNAME PROP                   6"EVENTS_D_2" 4 
PSHELL         6  6600126.24      660012          660012        0.0      
MAT1      660011210000.0        0.3     7.9-9                            
MAT1      660012200.0           0.49    2.1-9                            
EIGRL          11.0     300.0                                       MASS 
SPC            3 6608087  3     0.0     SPC            3 6608086  3     0.0     SPC            3 6608084  1245  0.0     SPC            3 6608088  3     0.0     SPC            
3 6608089  3     0.0      
PLOAD2         20.2         3037 PLOAD2         20.2          623 PLOAD2         20.2         6350 
$$ 
ENDDATA 
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