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Abstract: The transmissibility of one degree of freedom mechanical systems with oscillating support, 
performing harmonic movements, are studied. Different types of rheological models used as a link 
between support and the mass are considered.  The differences between the transmissibility diagrams 
corresponding to the “classic” case, usually studied in the theory of vibration (oscillating support, 
Kelvin-Voigt model and mass) and the systems containing other rheological models are presented and 
discussed. 
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1. INTRODUCTION 

 
 Studying the dynamics of one degree of 
freedom mechanical systems, one important 
problem is to determine the amplitude of mass 
m displacements due to the oscillating support, 
that is linked with the mass via the Kelvin-
Voigt model, [1], [5], [8], [9], [12], [15], [19] 
composed by a spring (k is the spring stiffness) 
and a damper (c is the damping coefficient), 
disposed in parallel. The transmissibility is 
defined as a ratio between the mass amplitude 
displacement and the oscillating support 
displacement amplitude [1], [5], [10], [15], 
[19], 
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 In figure 1 are represented the plots of the 
transmissibility for different values of the 
damping ratio, between 0.0 and 1.5 
 

 
Fig. 1 The transmissibility diagrams [15] 
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 If the mass displacements refer to a fixed, 
absolute frame, the transmissibility is named 
absolute transmissibility. 
 As it is known, the link between the mass 
and the oscillating support may be made with 
different elements, of Hooke’s and Newton’s 
type (figure 2),  

 

 
Fig. 2. The Hooke’s and Newton’s elements 

 
in such cases the transmissibility and the other 
characteristics of the mechanical systems have 
to be studied, because many particularities may 
appear. 
 
 

2. THEORETICAL CONSIDERATIONS 
 
 The transmissibility will be studied 
considering the mechanical systems represented 
in figures 3, 4 and 5. 
 We can notice that in the figure 3 the system 
has two Kelvin-Voigt models disposed in 
series, and in the figures 4 and 5 the Kelvin-
Voigt model in series with Hooke’s element.  
  

 
Fig. 3 Two Kelvin-Voigt models in series 

 

 
Fig. 4 Hooke and Kelvin-Voigt models in series 

 

 
Fig. 5 Kelvin-Voigt and Hooke models in series 

 

Based on the second Newton’s law one may 
write the following differential equations, the 
first corresponding to the fictitious mass m1  
and the second to the existing mass m2 [1], [6], 
[10], [12], [15], [19],  
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 These equations may be also written in the 
matrix form, as it is shown 
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 Because m1 = 0  and noting  m2 = m, x2 = x, 
the system (1) become 
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obtaining simultaneous linear equations, the 
unknowns being considered x1 and 1x& .  
 Solving this system we obtain the unknowns  
x1  and  1x&  
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 The derivative with respect of time of 
variable x1 is 
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and equaling it with the previously obtained 
expression of unknown 1x& , we obtain  
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 The following third order nonhomogeneous 
differential equation will result: 
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The second term of this differential equation 

may be written in a simplified form: 
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the amplitude A and the phase angle φ having 
the expressions: 
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 As a consequence, the differential equation 
becomes  
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and its particular solution will look like the 
second term, therefore this solution will be a  
harmonic function. 

To obtain this solution will be used the 
method of transforming the differential 
equation in complex one, replacing [15], 
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 After replacing the derivatives of complex 
variable Z, 
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 The complex expression Z of the mass m  
displacement has the form,  
 

)t(j

21
2

1221

2121
2

21

e

])cc(mckck[j

]cc)kk(m[kk
A

Z ϕ+ω

+ω−+ω+

+++ω−
=  

 
and using the formula (8) of the amplitude A 
will result 
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 The modulus of the complex displacement Z 
has the following expression 
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  According to the definition, the absolute 
transmissibility of displacements is computed 

as 
0s
|Z|

T = , obtaining :  
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 The expression of the mass displacement is, 
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where the angle  ψ  is the argument of complex 
number, its algebraic form being  
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 The final expression of the mass m  
displacement are the following: 
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 Considering the particular cases showed in 
figures 4 (c1=c≠0, c2=0)  and  5 (c1=0, c2=c≠0) 
on obtain some simplified expressions for the 
transmissibility computing: 
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 The deduced formulas (12), (15) and (16) 
are proper to compute the transmissibility when 
the rheological model is composed by two 
Kelvin-Voigt model in series or a Kelvin-Voigt 
model in series with Hooke’s model. 
 In present days were identified different 
materials which characteristics may be modeled 
using other rheological model – the Zener 
model, such model being a component of the  
mechanical system represented in figure 6. 
 

 
Fig. 6. The mechanical system containing the Zener’s 

rheological model 
 

 As it is shown the Zener model is composed 
from a Maxwell model (Hooke and Newton 
models in series) and in parallel with the Hooke 
model. 
 Using the similar method on may deduce the 
transmissibility expression for the system 
presented above.   
 Considering the two masses m1  and  m2  the 
following differential equations may be written: 
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or in matrix form 
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 Because m1 = 0  and  m2 = m will result 
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 Removing the unknown x1, after some 
calculi is obtained the third order differential 
equation, nonhomogeneous,  
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 The second term may be written as follows 
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 The following differential equation will be 
considered in the future 
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 This equation will be rewritten in complex 
form, considering 
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and it modulus 
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 According to the transmissibility definition 
will result the expressions of the module and of 
the phase angle 
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3. NUMERICAL RESULTS 
 
 There is considered the mechanical system 
as in figure 3. The oscillating support amplitude 
is 0.005 [m], and variable frequency, other 
characteristics being: m=50 [kg], k1=20000 
[N/m], k2=25000 [N/m], c1=1000 [N.s/m], 
c2=1500 [N.s/m]. In the figure 7 are presented 
the two plots corresponding to the amplitude 
and phase angle of the absolute transmissibility 
of this mechanical system.  
 

 
Fig. 7 Diagrams of transmissibility and phase angle for 

specified numerical values 
 

 The same types of diagrams are represented 
in the figures 8 and 9 the differences consist in 
the values of damping constants c1  and c2 .  

The above presented diagrams correspond to 
the mechanical systems from the figures 4 and 
5. We can notice that maximal value of the 
transmissibility amplitude depends on the 
damping coefficients and also the abscissa of 
this point is greater than unity when one of 
damping constants has zero value. 
 In the next three figures are shown families 
of diagrams obtained in the special case when 
the equivalent stiffness is the same (8000 
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[N/m]) and the ratio of k2 and k1 has values 
between 0.75 and 1.5 .  In figures 10, 11 and 12 
are considered different values for the damping 
coefficient c1 (1000, 2000 and 3000) the second 
being c2=0. 

 
Fig. 8 Diagrams of transmissibility and phase angle for 

specified numerical values 
 

 
Fig. 9 Diagrams of transmissibility and phase angle for 

specified numerical values 
 

  

 
Fig.10 The transmissibility diagrams (c1 =1000) 

 

 
Fig. 11 The transmissibility diagrams (c1 =2000) 

 
 

 
Fig. 12 The transmissibility diagrams (c1 =3000) 

 
 Observing the plotted diagrams we can see 
that the abscissas of the maximal points are 
moving to the right when the damping 
coefficient increases.   
 Considering the expressions (21) and (22)  
of the transmissibility and phase angle in the 
case of mechanical system having Zener’s type 
springs and dampers  we obtain the diagrams 
presented in the figure 13.  
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Fig. 13  Transmissibility and phase angle (Zener model) 

 
 
4. CONCLUSIONS  
 

The study of the mechanical system 
transmissibility arise in many areas: the 
vibration isolation [4], [13], the movement of a 
whole human body subjected to vibrations, in 
standing or sitting positions [3], [6], [7], the 
determination of the optimal parameters of a 
drivers auto seats [14], [20], [21], a. o.  

The recently used isolation materials have 
elastic and damping properties that can not be 
modeled with rheological model of Kelvin-
Voigt type.  

Many researches are focused on the study of 
other rheological models, more complicated 
than the well known Kelvin-Voigt model, the 
proposed paper belongs to the same category. 

Using the deduced formulas and a C 
program [16], was possible to show a lot of 
diagrams of the transmissibility and to compare 
its with the diagrams corresponding to the 
system endowed with Kelvin-Voigt rheological 
models.  
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CONTRIBUŢII  LA  STUDIUL  TRANSMISIBILITĂŢII  SISTEMELOR  MECANICE  CU  UN  GRAD  DE 
LIBERTATE,  CU  SUPORT OSCILANT,  CU DIFERITE  ELEMENTE  ELASTICE  ŞI  VISCOASE 

 
Se efectuează un studiu al transmisibilităţii sistemelor mecanice cu un grad de libertate, mişcarea cărora este 

datorată unui suport oscilant.  Sunt considerate diferite tipuri de modele reologice care fac legătura dintre suportul 
oscilant şi masa sistemului. Se arată diferenţele care apar în ceea ce priveşte diagramele de transmisibilitate intâlnite în 
cazul “clasic” (suport oscilant, model reologic de tip Kelvin-Voigt, masă) şi sistemele care conţin alte modele reologice 
de legătură dintre suport şi masă.  
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