
7

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics, Mechanics, and Engineering
 Vol. 60, Issue I, March, 2017

ARDUINO LEONARDO PROGRAMMING UNDER WINDOWS, IN JAVA,
FROM JDEVELOPER USING ARDULINK

Tiberiu Alexandru ANTAL

Abstract: The paper gives a step by step description for configuring Windows and JDeveloper IDE in

order to interact with the Arduiono Leonardo microcontroller using the Java programming language

based on the Ardulink Java Open Source project.

Key words: Java, JDeveloper, Arduino, Microcontroller, Ardulink.

1. INTRODUCTION

A microcontroller is a computer designed for

embedded applications, which means that it

will be part of some more complex device. We

use it whenever limited computing functions

are needed in order to control electronic devices

attached to some processes. It contains the

microprocessor, running at a low frequency,

ROM, RAM and some I/O functions depending

on the implemented architecture.

Microcontroller programs are stored in the

ROM, written is some C flavor and dedicated to

perform a single task.

Microcontroller boards are printed circuit

boards designed to facilitate the work with the

microcontroller and include typical components

as: power circuit, programming interface, basic

input (usually buttons and LEDs) and I/O pins.

JDeveleoper is an Oracle IDE for Java

programmers that can be used among others to

write Java GUIs [1] or the program CAD

applications [2] under certain limitations. The

following paper describes the steps to program

in Java, using the JDeveloper IDE, the Arduino

Leonardo based on the Ardulink open source

java solution for the control and coordination of

Arduino boards (http://www.ardulink.org/). The

following software must be downloaded and

installed in order to succeed in Java

programming of the board:

- libusb-win32-bin-1.2.6.0.zip from

https://sourceforge.net/projects/libusb-

win32/files/libusb-win32-releases/1.2.6.0/ in

order to connect from Java over USB to the

Arduino Leonardo board; the libusb is a C

library that provides generic access to USB

devices intended to be used by developers to

facilitate the production of applications that

communicate with USB hardware;

 - the Arduino environment (IDE) from

https://www.arduino.cc/en/Main/Software; the

environment is necessary as the

ArdulinkProtocol4LeonardoAndMicro.ino

sketch must be uploaded to the Leonardo board

in order achieve Java communication over

USB;

 - the ardulink java solution from

http://www.ardulink.org/download/ in order to

interact from Java with the board.

2. INSTALLING LIBUSB-WIN32-BIN-
1.2.6.0.ZIP UNDE WINDOWS OS

 The following figures are showing step-by-

step what actions are needed in order to install

the USB drivers for Arduino Leonardo board

on Windows 10 of 64 bits. When unzipped the

contents of the LIBUSB-WIN32-BIN-1.2.6.0

file is shown in Figure 1.

8

Fig. 1. – Contents of the LIBUSB-WIN32-BIN-

1.2.6.0 zip file.

In order to start the installation from the [bin]

directory (Fig. 1) we start the inf-wizard.exe

application.

Fig. 2. – Start screen of the LIBUSB-WIN32-BIN-

1.2.6.0 driver installation.

Fig. 3. – Selection of the USB device that will be

used by the driver.

To get to the screen from Fig. 3 the Arduion

Leonardo board must be connected to the

computer over USB. Figure 4 is showing the

configuration of the device

Fig. 4. – Arduino Leonardo device USB

configuration.

After the Next button is clicked the

Arduion_Leonardo_(Interface_0).inf file

generated by the wizard must be saved on the

disk as shown in Figure 5.

Fig. 5. – Selection of the place to store the

Arduion_Leonardo_(Interface_0).inf.

The wizard can proceed with the installation of

de device driver as shown in Fig. 6. Installation

will succeed if Windows is configured to accept

device drivers with no digital signature

information. This means this security policy

must be changed before running the wizard. If

this has not been done then after clicking the

Install Now … button from Fig. 6 Windows 10

will issue the error from Figure 7 .

9

Fig. 6. – Selection of the place to store the

Arduion_Leonardo_(Interface_0).inf.

Fig. 7. – Windows 10 error message when trying to

install a device driver with no digital signature.

If the error from above is displayed Windows

10 must be rebooted while holding down the

<Shift> key. This is a way to install drivers

without digital signature information. The

Arduino_Leonardo_(Interface_0).inf file must

be installed manually and the screen from Fig.

8 shows what to choose to successfully install

the driver.

Fig. 8. – Selection screen for installing a device

driver with no digital signature information under

Windows 10.

This unsigned driver may not be shown in the

Device Manager but be installed correctly to

operate under Java over USB.

3. INSTALLING THE ARDIONO IDE

The steps necessary to work with the IDE are

well described on the Arduino web site. Fig. 10

is only showing how a correctly configured

IDE should look for the Lenardo board and that

the ArdulinkProtocol4LeonardoAndMicro.ino

sketch must be compiled and loaded to the

board in order to proceed with the Java

interaction over the USB port. The sketch is

necessary because the Arduino Leonardo lacks

the serial connection feature on USB so the

code will ‘supply’ the missing feature to the

board.

4. INSTALLING THE ARDULINK
JAVA OPEN SOURCE SOLUTION

 The contents of the unzipped ardulink-

V0.6.1-20151223-2236.zip file is shown in Fig.

9. ArdulinkProtocol4LeonardoAndMicro.ino

sketch from the [sketches] directory must be

loaded to the board in order to use Java

communication over the USB port.

Fig. 9. – Contents of the ardulink-V0.6.1-20151223-

2236.zip file.

5. CONFIGURING JDEVELOPER TO
RUN THE JAVA CODE BASED ON
ARDULINK

The [lib] directory (Fig. 9) must be added to

the Project Properties … in JDeveloper [3]- [9]

with the help of the dialog from Fig. 11. Also,

10

the contents of the [winDLLs] directory (Fig. 9)

must be copied to the project directory of the

Java application (the one with the src and

classes directories and holding the .jpr file [3],

[4] – see Fig. 12) depending on the 32 or 64 bit

Windows used on the machine.

Fig. 10. – Arduion IDE used to connect to the de Leonardo board.

Fig. 11. – Project Properties, Libraries and Classpath

tab in JDeveloper.

Fig. 12. – Content of the [winDLLs] copied to the

JAVA project directory.

The original code for LED blinking can be

found at http://www.ardulink.org/how-to-blink-

a-led/. The following version is modified to run

only on Arduino Leonardo USB connection

using ALProtocol. The

Link.getDefaultInstance() gets the

default Link class instance that is using the

ALProtocol. Each link can define a specific

protocol or use the protocol Ardulink called

ALProtocol. ALProtocol (Ardulink Protocol)

is a legacy protocol that refer to an interface,

called IProtocol, that ALProtocol implements.

If the communication over USB is not working

properly some investigations can be made with

the help of the Ardulink Console desktop

application that can be run by typing in the

Command Prompt Window java -jar

ardulink-console-0.6.1.jar. If all

installations went well the Log Window from

JDeveloper should look like the following log

ending with connection on COM3 established

Connected: true.

Native lib Version = RXTX-2.2-20081207

Cloudhopper Build rxtx.cloudhopper.net

Java lib Version = RXTX-2.1-7

WARNING: RXTX Version mismatch

Jar version = RXTX-2.1-7

11

 native lib Version = RXTX-2.2-20081207

Cloudhopper Build rxtx.cloudhopper.net

Nov 30, 2016 9:36:23 PM

org.zu.ardulink.ConnectionContact writeLog

INFO: found the following ports:

Nov 30, 2016 9:36:23 PM

org.zu.ardulink.ConnectionContact writeLog

INFO: COM3

Connecting on port: COM3

Nov 30, 2016 9:36:23 PM

org.zu.ardulink.ConnectionContact writeLog

INFO: connection on COM3 established

Connected:true

If the board works with the Java code then it

should write to the Log Window lines like:

Send power:1

Send power:0

…

Send power:0

until the Java applications is stopped.

Depending on the stop moment the LED might

stay on of off. In order to understand how the

following code was build the following

documentation link must be consulted

http://www.ardulink.org/javadoc/Arduino-

1/ardulink-core/index.html

import java.util.List;

import org.zu.ardulink.Link;

import org.zu.ardulink.protocol.IProtocol;

public class BlinkLED {

 public static void main(String[] args) {

 try {

 Link link = Link.getDefaultInstance();

 List<String> portList = link.getPortList();

 if (portList != null && portList.size() > 0) {

 String port = portList.get(0);

 System.out.println("Connecting on port: " + port);

 boolean connected = link.connect(port);

 System.out.println("Connected:" + connected);

 Thread.sleep(1000);

 int power = IProtocol.HIGH;

 while (true) {

 System.out.println("Send power:" + power);

 link.sendPowerPinSwitch(13, power);

 if (power == IProtocol.HIGH) {

 power = IProtocol.LOW;

 Thread.sleep(500);

 } else {

 power = IProtocol.HIGH;

 Thread.sleep(500);

 }

 //Thread.sleep(500);

 }

 } else {

 System.out.println("No port found!");

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

12

 }

The Link class represents the serial

connection between the computer and the

Arduino board over the USB. It must be used

by any java class to communicate with

Arduino. The steps necessary to establish the

connection using the class and the methods for

that are given at http://www.ardulink.org/how-

to-blink-a-led/. The

sendPowerPinSwitch() method request

Arduino to perform a digitalWrite()

function call to turn ON or OFF the LED. The

first argument is the pin number and the second

o constant with the IProtocol.HIGH or

IProtocol.LOW values. The second class

used to interact with the LED from the board is

called IProtocol. This is an interface that

defines all the messages that can be sent to the

Arduino and provides a method to analyze all

messages from Arduino. The Java code is based

on an infinite while loop. Inside the loop the

Thread.sleep(long millis) method

causes the currently executing thread to sleep

for the specified number of milliseconds. For

each sleep period the LED is set ON by

assigning to the variable power the

IProtocol.HIGH value or OFF by

assigning to the variable power the

IProtocol.LOW value. So for each time the

body of the loop is executed the LED will stay

a while ON and then OFF. The process is

repeated until the application is terminated.

REFERENCES

[1] ANTAL, T .A., GUI's in JDeveloper, Acta

Technica Napocensis, Series: Applied

Mathemathics and Mechanics, Nr. 52, Vol.

IV, 2009, p.27-32, ISSN 1221-5872.

[2] ANTAL, T .A., Programming AutoCAD

using JAWIN from Java in JDeveloper, Acta

Technica Napocensis, Series: Applied

Mathemathics and Mechanics, Nr. 53, Vol.

III, 2010, p.481-486, ISSN 1221-5872.

[3] ANTAL, T. A., Elemente de Java cu

Jdeveloper - îndrumător de laborator,

Editura UTPRES, 2013, p.150, ISBN: 978-

973-662-827-6.

[4] ANTAL, T. A., Java - Iniţiere - îndrumător

de laborator, Editura UTPRES, 2013, p.

246, ISBN: 978-973-662-832-0.

[5] Harshad Oak. Oracle JDeveloper 10g,

APRESS, 2004.

[6] Avrom Roy-Faderman, Peter Koletzke, Paul

Dorsey, Oracle JDeveloper 10g Handbook,

McGraw-Hill/Osborne, 2004.

[7] Deitel, H. M., Deitel, P. J., Java: How to

program, fifth editor, Prentice Hall, 2004,

ISBN 0-13-120236-7.

[8] Herbert Schildt, Java 2: The complete

reference, fifth edition, Osborne, 2001,

ISBN 0-07-213084-9.

[9] Kathy Siera, Bert Bates, Sun Certified

Programmer for Java 6 Study Guide,

McGraw Hill, 2008, ISBN 978--0-07-

159108-9.

PROGRAMAREA PLĂCII AURDUINO LEONARDO SUB WINDOWS, ÎN JAVA, UTILIZÂND MEDIUL
JEDEVELOPER ŞI BIBLIOTECA ARDULINK

Rezumat: Lucrarea îşi propune să dea o descriere clară şi detaliată a modului în care se poate conecta mediul de

programare JDeveloper cu placa Arduino Leonardo în vederea utilizării limbajului de programare Java pentru a

interacţiona cu placa prin intermediul bibliotecii Ardulink.

Tiberiu Alexandru ANTAL, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

