EXPERIMENTAL AND NUMERICAL STUDY ON JET ABRASIVE MACHINING OF ALUMINUM 2024 – T3

Abderraouf GHERISSI, Ibrahim ElNASRI

Abstract


Abrasive jet machining is not very effective on soft materials, therefore for a highly efficient process, it is necessary to optimize the process parameters to increase the material removal rate and obtain a good surface quality on soft material. In the present work a new experimental and numerical investigation was carried out to optimize the abrasive jet drilling operation on aluminum 2024-T3. A high-velocity jet of air carrying fine abrasive particles of silica sand SiO2 was used to perform the experiments. The abrasive jet machine used in this work can perform CNC drilling. The abrasive jet of SiO2 is given by the x- and z -axes while the specimen is motorized by the y-axis. The impact angle was chosen as 90°. Through this work an experimental study of the material’s removal rate (MRR) at two different mass flow rates of abrasive particles (MP) was carried out. The numerical study was approximated to the impact of a single particle at MP=1.2 g/s with a particle jet velocity of around 200 m/s and for MP=2.2 g/s with a particle jet velocity of around 300 m/s. The numerical results for the eroded mass compared with the experimental results are close. The high precision, rapidity and efficiency of the present optimized process make it an alternative to traditional drilling processes.


Full Text:

PDF

References


D. A. Axinte, D. S. Srinivasu, M. C. Kong, P. Butler-Smith, Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation, International Journal of Machine Tools and Manufacture, 2009, 49(10):797-803, DOI 10.1016/j.ijmachtools.2009.04.003

H. Nakamura, M. Nakamura, N. Osuga, H. Miyazawa, Application of an air-abrasive cutting apparatus in the pediatric dental field: Cutting using chitin-chitosan grains, Pediatric Dental Journal , 2006, 16(1):57-66, DOI https://doi.org/10.11411/pdj.16.57

K. Rajasekhara Reddy, D.V. Srikanth, Investigation of drilling time vs depth of cut & kerf using abrasive jet machining, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2015, 12(6): 54-61.

S. Manikyam Reddy, S. Hussain, D. V. Srikanth, M. Sreenivasa Rao, Experimental analysis and optimization of process parameters in machining of RCFRP by AJM, International Journal of Innovative Research in Science, Engineering and Technology, 2015, 4(8), DOI:10.15680/IJIRSET.2015.0408053

F.-C. Tsai, B.-H. Yan, C.-Y. Kuan, R.-T. Hsu, J.-C. Hung, An investigation into superficial embedment in mirror-like machining using abrasive jet polishing, Int. J. Adv. Manuf. Technol., 2009, 43:500–512, DOI 10.1007/s00170-008-1734-8

B. Chandra, A study of effect of process parameters of abrasive jet machining, International Journal of Engineering Science and Technology, 2011, 3(1):504–513.

R. Jafar, J. K. Spelt, M. Papini, Surface roughness and erosion rate of abrasive jet micro-machined channels: Experiments and analytical model, Wear, 2013, 303:138–145.

F. Chen, X. Miao, Y. Tang, S. Yin, A review on recent advances in machining methods based on abrasive jet polishing (AJP), Int. J. Adv. Manuf. Technol., 2017, 90:785–799.

D. Venturini, M. S. Cenci, F. F. Demarco, G. B. Camacho, J. M. Powers, Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations, Operative Dentistry, 2006, 31(1):11-17.

K. Guará Brusaca Almeida Scheibe, K. Guará Brusaca Almeida, I. Studart Medeiros, J. Ferreira Costa, C. Maria Coêlho Alves, Effect of different polishing systems on the surface roughness of microhybrid composites, J. Appl. Oral Sci., 2009,17 (1).

M. A. Chinelatti, D. T. Chimello, R. P. Ramos, R. G. Palma-Dibb, Evaluation of the surface hardness of composite resins before and after polishing at different times, J. Appl. Oral Sci., 2006, 14(3):188-192 .

G. S. Aswal, C. K. Nair, Effects of various parameters of alumina air abrasion on the mechanical properties of low-fusing feldspathic porcelain laminate material, SADJ, 2015, 70(4):150-155.

T. Kulunk, M. Kurt, Ç. Ural, Ş. Kulunk, S. Baba, Effect of different air-abrasion particles on metal-ceramic bond strength, Journal of Dental Sciences, 2011, 6:140-1460.

D. Arola, A. E. Alade, W. Weber, Improving fatigue strength of metals using abrasive waterjet polishing, Machining Science and Technology, 2006, 10:197-218.

A. Azhari, S. Sulaiman, A. K. Prasada Rao, A review on the application of polishing processes for surface treatment, IOP Conf. Series: Materials Science and Engineering, 2006, 114:012002.

F. Boud, L. F. Loo, P. K. Kinnell, The impact of plain waterjet machining on the surface integrity of aluminium 7475, Procedia CIRP, 2014, 13:382- 386.

K. T. Choa, K. Song, S. H. Oh, Y.-K. Lee, K. M. Lim and W. B. Lee, Surface hardening of aluminum alloy by shot polishing treatment with Zn based ball, Materials Science and Engineering A, 2012, 543:44–49.

E. S. Abdel Nasser, A. Elkaseer, A. Nassef, Abrasive jet machining of glass: Experimental investigation with artificial neural network modelling and genetic algorithm optimization, Cogent Engineering, 2016, 3:1276513.

D. Alman, J. Tylczak, J. Hawk, M. Hebsur, Solid particle erosion behavior of a Si3N4–MoSi2, Mater. Sci. Eng. A, 1999, 261:245-251.

M. W. Chastagner, A. J. Shih, Abrasive jet machining for edge generation, Transactions of NAMRI/SME, 2007, 3.

A. A. Khan, N. B. Munajat, H. B. Tajudin, A study on abrasive water jet machining of aluminum with garnet abrasives, Journal of Applied Science, 2005, 5(9):1650‐1654.

S. Dhar, T. Krajac, D. Ciampini, M. Papini, Erosion mechanisms due to impact of single angular particles, Wear, 2005, 258:567-579.

V. C. Venkatesh, Parametric studies on abrasive jet machining, Annals of the CIRP, 1984, 33(1):109.

R.B. Shukla, Abrasive jet machining, Proc. Abra. Eng. Soc. Conf., 1985, 23:91-100.

LS-DYNA, Keyword user’s manual, Livermore Software Technology Corporation. Version 971, 2007.

J. O. Hallquist, Theoretical manual. Livermore Software Technology Corporation, 1998.

J. D. Seidt, A. Gilet, Plastic deformation of 2024-T351 aluminum under a wide range of loading conditions, Int. J. Solid Structs., 2013, 50(10):1781-1790.

D. R. Lesuer, Experimental investigations of material model for Ti-6Al-4V titanium and 2024-T3 aluminum, Technical Report DOT/FAA/AR-00/25. Lawrence Livermore National Laboratory, Livermore, 2002.

J. Lemaitre, A course on damage mechanics. 2nd ed. Berlin: Springer, ISBN 1996; 3-540-60980.

Key words: abrasive jet drilling; material removal rate (MRR); mass flow rate of abrasive particles (MP); Aluminum 2024-T3.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :