Adrian Ioan BOTEAN


Using a γ-type Stirling engine, with a total cylinder capacity of 20 cm3, this paper aims to establish the indicated power Pi and the thermal efficiency η according to the temperature gradient between its component parts (expansion cylinder, radiator and power cylinder). This temperature gradient is controlled by thermal barriers (klingerit gaskets) mounted in four variants for the study.

Key words: gamma Stirling engine, gradient temperature, working fluid, power, speed, thermodynamic cycle, kling erit gaskets, thermal efficiency

Full Text:



Dawi, S.M.H.W., Othman, M.M., Musirin, I., Kamaruzaman, A.A.M., Arriffin, A.M., Salim, N.A., Gamma Stirling engine for a small design of renewable resource model, Indonesian Journal of Electrical Engineering and Computer Science, vol.8, no.2, pp.350-359, 2017

Grosu, L., Dobre, C., Petrescu, S., Study of a Stirling engine used for domestic micro – cogeneration. Thermodynamic analysis and experiment, International Journal of Energy Research, 39, pp.1280 – 1294, 2015

Sowale, A., Kolios, A.J., Fidalgo, B., Somorin, T., Parker, A., Williams, L., Collins, M., McAdam, E., Tyrrel, S., Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system, Energy Conversion and Management 165, pp.528 – 540, 2018

Alfarawi, S., Webb-Martin, M., Mahmoud, S., AL-Dadah, R.K., Thermal analysis of Stirling engine to power automotive alternator using heat from exhaust gases, Energy Procedia 61, pp.2395 – 2398, 2014

Jadhao, J.S., Thombare, D.G., Review on exhaust gas heat recovery for I.C. Engine, International Journal of Engineering and Innovative Technology, vol.2, no.12, 2013

Tew, R., Jefferies, K., Miao, D., A Stirling engine computer model for performance calculations, National Aeronautics and Space Administration Lewis Research Center, 1978

Formosa, F., Despesse, G., Analytical model for Stirling cycle machine design, Energy Conversion and Management 51, pp.1855 – 1863, 2010

Campos, M.C., Vargas, J.V.C., Ordonez, J.C., Thermodynamic optimization of a Stirling engine, Energy 44, pp.902 – 910, 2012

Paul, C.J., Engeda, A., Modeling a complete Stirling engine, Energy 80, pp.85 – 97, 2015

Martaj, N., Grosu, L., Rochelle, P., Thermodynamic study of a low temperature difference Stirling engine at steady state operation, Int.J.of Thermodynamics, vol.10, no.4, pp.165 – 176, 2007

Salazar, J.L., Chen, W.L., A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β – type Stirling engine, Energy Conversion and Management 88, pp.177 – 188, 2014

Hachem, H., Gheith, R., Aloui, F., Nasrallah, S.B., Numerical characterization of a γ – Stirling engine considering losses and interaction between functioning parameters, Energy Conversion and Management 96 (2015) 532 – 543

Babaelahi, M., Sayyaadi, H., A new thermal model based on polytropic numerical simulation of Stirling engines, Applied Energy 141, pp.143 – 159, 2015

Kuban, L., Stempka, J., Tyliszczak, A., A 3D – CFD study of a γ – type Stirling engine, Energy 169, pp.142 – 159, 2019

Gheith, R., Hachem, H., Aloui, F., Nasrallah, S.B., Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization, Energy Conversion and Management 105, pp.285 – 293, 2015

Cinar, C., Karabulut, H., Manufacturing and testing of a gamma type Stirling engine, Renewable Energy 30, pp.57 – 66, 2005

Scollo, L., Valdez, P., Baron, J., Design and construction of a Stirling engine prototype, International Journal of Hydrogen Energy 33, pp.3506 – 3510, 2008

Araoz, J.A., Cardozo, E., Salomon, M., Alejo, L., Fransson, T.H., Development and validation of a thermodynamic model for the performance analysis of a gamma Stirling engine prototype, Applied Thermal Engineering 83, pp.16 – 30, 2015

Walker, G., Stirling Engines, Oxford: Clarendon Press, 1980

Schmith, G., Classical analysis of operation of Stirling engine. A report published in German Engineering. Union (Original German), vol. XV (1871), pp.1-12, 1987

Hirata, K., Schmidt theory for Stirling engines, National Maritime Research Institute, http://nmri.go.jp /env/khirata/, 2019

www.robertstirlingengine.com/theory.php, 2019

Saenyot K., Chamdee P., Raksrithong P., Locharoenrat K., Lekchaum S., Improvement of thermal performance of Gamma – type Stirling engine, International Conference on Civil, Mechanical and Material Engineering, AIP Conf. Proc. 1973, 020023 – 1 – 020023 – 5; https://doi.org/10.1063/1.5041407, Published by AIP Publishing 978 – 0 – 7354 – 1680 - 2

Botean, A.I., Influence of the temperature gradient on the speed of a Stirling gamma engine, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, Vol.61, Issue III, 2018.

Botean, A.I., Florescu, M., Glogoveţan, A., Vitan, V., The functional analysis of a gamma type Stirling engine, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, Vol.59, Issue I, 2016

Botean, A.I., Hiticaş, I., Experimental power determination of a gamma type Stirling engine, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, Vol.60, Issue I, 2017

Botean, A.I., Influence of working fluid pressure on the power of a Stirling gamma engine, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, Vol.61, Issue II, 2018


  • There are currently no refbacks.