PRACTICAL DATA MINING APPLIED IN STEEL COILS MANUFACTURING

Imanol BILBAO, Javier BILBAO, Cristina FENISER, Andrei BORSA

Abstract


Due to the big amount of data that researchers can be obtain at the present, Data Mining is an important research field that can be applied in different fields. One of these fields is the recommendation or recommender systems, which take a large number of data, values, products or characteristics to obtain some outputs as recommendations for a user that is interested in some area. Sometimes Data Mining is established as one of the stages of a more generic process called Knowledge Discovery in Databases. In this paper, a review of these processes is done and we analyze some techniques used, such as KNN, Naïve Bayes, decision trees, SVM, ANN, regression and multiclassifiers

Full Text:

PDF

References


Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. AI Magazine Volume 17 Number 3, 37–54 (1996).

Liu, X., Zhang, X., Li, X., Sun,

Z.: Research on data mining clustering algorithm in cloud computing environments. BTAIJ, 10(17), 9562–9566 (2014).

Witten, I.H., Frank, E., Hall, M.A.,

Pal, C.J.: Data Mining. Practical Machine Learning Tools and Techniques. 4th edn. Elsevier (2017).

Burke, R.: Hybrid recommender systems: Survey and experiments. User Modelling and User-Adapted Interaction 12(4),

–370 (2002).

Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40 (3), 56–58 (1997).

Burke, R.: Hybrid web recommender systems. In: The Adaptive Web,

pp. 377–408. Springer, Berlin / Heidelberg (2007).

Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.) Hypertext,

pp. 73–82. ACM (2009).

Xiao, B., Benbasat, I.: E-commerce product recommendation agents: use, characteristics, and impact. MIS Quarterly 31(1), 137–209 (2007).

Lee, T.Q., Park, Y., Park, Y.T.: A time-based approach to effective recommender systems using implicit feedback. Expert Systems with Applications, 34(4), 3055–3062 (2008).

Nuñez-Valdez, E.R., Cueva Lovelle,

J.M., Sanjuan Martinez, O., Garcia-Diaz, V., Ordoñez de Pablos, P., Montenegro Marin, C.E.: Implicit feedback techniques on recommender systems applied to electronic books. Computers in Human Behavior 28(4), 1186–1193 (2012).

Konstan, J.A., Miller, B.N., Maltz,

D., Herlocker, J.L., Gordon, L.R., Riedl,

J.: Grouplens: applying collaborative filtering to usenet news. Communications of the ACM 40(3), 77–87 (1997).

Nichols, D.: Implicit rating and filtering. In Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, ERCIM, pp. 31–36. (1998).

Desrosiers, C., Karypis, G.: A compre-hensive survey of neighborhood based recommendation methods. In Reco-mmender Systems Handbook, chapter 4, pp. 107–144. Springer US (2011).

Zanker, M., Jessenitschnig, M.: Case-studies on exploiting explicit customer requirements in recommender systems. User Modelling and User-Adapted Interaction 19(1-2), 133–166, (2009).

Jeong, B., Lee, J., Cho, H.: An iterative semi-explicit rating method for building collaborative recommender systems. Expert Systems with Applications 36(3), 6181–6186 (2009).

Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Information Sciences 180(11), 2142–2155 (2010).

Koren, Y., Bell, R.: Advances in collaborative filtering. In Recommender Systems Handbook, chapter 5, pp. 145–186. Springer US (2011).

Alsaleh, S., Nayak, R., Xu, Y., Chen, L.: Improving matching process in social network using implicit and explicit user information. In: Springer-Verlag, Proceedings of the 13th Asia-Pacific web conference on Web technologies and applications, pp. 313–320, Berlin, Heidelberg (2011).

Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23(1), 103–145 (2005).

Gao, M., Liu, K., Wu, Z.: Personalization in web computing and informatics: Theories, techniques, applications, and future research. Information Systems Frontiers 12(5), 607–629, (2010).

Burke, R.: Integrating Knowledge-based and Collaborative filtering Recommender Systems. In Workshop on AI and Electronic Commerce (1999).

Barranco, M.J., Martinez, L.: A method for weighting multi-valued features in content-based filtering. In: Springer-Verlag, Proceedings of the 23rd international conference on Industrial engineering and other applications of applied intelligent systems – Volume Part III, IEA/AIE'10, pp. 409–418, Berlin, Heidelberg (2010).

Blanco-Fernandez, Y., Lopez-Nores, M., Gil-Solla, A., Ramos-Cabrer, M., Pazos-Arias, J.J.: Exploring synergies between content-based filtering and Spreading Activation techniques in knowledge-based recommender systems. Information Sciences 181(21), 4823–4846 (2011).

Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69(32), 175–186 (2000).

Burke, R., Hammond, K.J., Young, B.C.: The findme approach to assisted browsing. IEEE Expert: Intelligent Systems and Their Applications 12(4), 32–40 (1997).

De Campos, L.M., Fernandez-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. International Journal of Approximate Reasoning 51(7), 785–799 (2010).

Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York, NY, USA (1991).

Dantas Bezerra, B.L., Tenorio de Carvalho, F.A.: A symbolic approach for content-based information filtering. Information Processing Letters 92(1), 45–52 (2004).

De Campos, L.M., Fernandez-Luna, J.M., Huete, J.F.: A collaborative recommender system based on probabilistic inference from fuzzy observations. Fuzzy Sets and Systems 159(12), 1554–1576 (2008).

Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005).

Franke, N., Schreier, M., Kaiser, U.: The “I designed it myself” effect in mass customization. Management Sciences 56(1), 125–140 (2010).

Burke, R.: Interactive critiquing for catalog navigation in E-commerce. Artificial Intelligence Review 18(3-4), 245–267 (2002).

Burke, R.: Hybrid web recommender systems. In The adaptive web, pp. 377–408 (2007).

Bilbao, J., Bilbao, I., Feniser, C.: Generalized Delta Rule with Entropy Error Function. Acta Technica Napocensis - Applied Mathematics, Mechanics and Engineering 60(2), 165–170 (2017).

Bridge, D., Ferguson, A.: An expressive query language for product recommender systems. Artificial Intelligence Review 18(3-4), 269–307 (2002).

Zhu, J., Ge, Z., Song, Z., Gao, F.: Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Annual Reviews in Control 46, 107–133 (2018).

Knorr, E.M.: Outliers and data mining: finding exceptions in data. University of British Columbia, (2002). doi: 10.14288/1.0051497

Mishra, S., Chawla, M.: A comparative study of local outlier factor algorithms for outliers detection in data streams. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 813. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1498-8_31

Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W.: Robust statistics, the approach based of influence functions. Wiley. (1986).

Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier Detection for Temporal Data: A Survey. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2250–2267, (2014). doi: 10.1109/TKDE.2013.184

Castejón Limas, M., Ordieres Meré, J.B., Martínez de Pisón Ascacibar, F.J., Vergara González, E.P.: Outlier detection and data cleaning in multivariate non-normal samples. The PAELLA algorithm. Data Mining and Knowledge Discovery, 9, 171–187, (2004).

Rousseeuw, P.J., Leroy, A.: Robust Regression and Outlier Detection: Diagnostic Regression Analysis. New York: John Wiley and Sons (1987).

Ahmed, M., Farag, A.: A neural approach to zoom-lens camera calibration from data with outliers. Image and Vision Computing, 20, 619–630 (2002).

Chuang, C., Su, S., Hsiao, C.: The annealing robust backpropagation (ARBP) learning algorithm. IEEE Transactions on Neural Networks, 11(5), 1067–1077 (2000).

Wang, B., Mao, Z.: Outlier detection based on a dynamic ensemble model: Applied to process monitoring. Information Fusion, 51, 244–258, (2019). doi: 10.1016/j.inffus.2019.02.006

Wang, X.Z.: Data Mining and Knowledge Discovery For Process Monitoring and Control. Advances in Industrial Control. Ed. Springer. London, (1999).

Sebzalli, Y.M., Wang, X.Z.: Knowledge discovery from process operational data using PCA and fuzzy clustering. Engineering Applications of Artificial Intelligence, 14 (2001).


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :