PRACTICAL DATA MINING APPLIED IN STEEL COILS MANUFACTURING
Abstract
Full Text:
PDFReferences
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. AI Magazine Volume 17 Number 3, 37–54 (1996).
Liu, X., Zhang, X., Li, X., Sun,
Z.: Research on data mining clustering algorithm in cloud computing environments. BTAIJ, 10(17), 9562–9566 (2014).
Witten, I.H., Frank, E., Hall, M.A.,
Pal, C.J.: Data Mining. Practical Machine Learning Tools and Techniques. 4th edn. Elsevier (2017).
Burke, R.: Hybrid recommender systems: Survey and experiments. User Modelling and User-Adapted Interaction 12(4),
–370 (2002).
Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40 (3), 56–58 (1997).
Burke, R.: Hybrid web recommender systems. In: The Adaptive Web,
pp. 377–408. Springer, Berlin / Heidelberg (2007).
Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.) Hypertext,
pp. 73–82. ACM (2009).
Xiao, B., Benbasat, I.: E-commerce product recommendation agents: use, characteristics, and impact. MIS Quarterly 31(1), 137–209 (2007).
Lee, T.Q., Park, Y., Park, Y.T.: A time-based approach to effective recommender systems using implicit feedback. Expert Systems with Applications, 34(4), 3055–3062 (2008).
Nuñez-Valdez, E.R., Cueva Lovelle,
J.M., Sanjuan Martinez, O., Garcia-Diaz, V., Ordoñez de Pablos, P., Montenegro Marin, C.E.: Implicit feedback techniques on recommender systems applied to electronic books. Computers in Human Behavior 28(4), 1186–1193 (2012).
Konstan, J.A., Miller, B.N., Maltz,
D., Herlocker, J.L., Gordon, L.R., Riedl,
J.: Grouplens: applying collaborative filtering to usenet news. Communications of the ACM 40(3), 77–87 (1997).
Nichols, D.: Implicit rating and filtering. In Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, ERCIM, pp. 31–36. (1998).
Desrosiers, C., Karypis, G.: A compre-hensive survey of neighborhood based recommendation methods. In Reco-mmender Systems Handbook, chapter 4, pp. 107–144. Springer US (2011).
Zanker, M., Jessenitschnig, M.: Case-studies on exploiting explicit customer requirements in recommender systems. User Modelling and User-Adapted Interaction 19(1-2), 133–166, (2009).
Jeong, B., Lee, J., Cho, H.: An iterative semi-explicit rating method for building collaborative recommender systems. Expert Systems with Applications 36(3), 6181–6186 (2009).
Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Information Sciences 180(11), 2142–2155 (2010).
Koren, Y., Bell, R.: Advances in collaborative filtering. In Recommender Systems Handbook, chapter 5, pp. 145–186. Springer US (2011).
Alsaleh, S., Nayak, R., Xu, Y., Chen, L.: Improving matching process in social network using implicit and explicit user information. In: Springer-Verlag, Proceedings of the 13th Asia-Pacific web conference on Web technologies and applications, pp. 313–320, Berlin, Heidelberg (2011).
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23(1), 103–145 (2005).
Gao, M., Liu, K., Wu, Z.: Personalization in web computing and informatics: Theories, techniques, applications, and future research. Information Systems Frontiers 12(5), 607–629, (2010).
Burke, R.: Integrating Knowledge-based and Collaborative filtering Recommender Systems. In Workshop on AI and Electronic Commerce (1999).
Barranco, M.J., Martinez, L.: A method for weighting multi-valued features in content-based filtering. In: Springer-Verlag, Proceedings of the 23rd international conference on Industrial engineering and other applications of applied intelligent systems – Volume Part III, IEA/AIE'10, pp. 409–418, Berlin, Heidelberg (2010).
Blanco-Fernandez, Y., Lopez-Nores, M., Gil-Solla, A., Ramos-Cabrer, M., Pazos-Arias, J.J.: Exploring synergies between content-based filtering and Spreading Activation techniques in knowledge-based recommender systems. Information Sciences 181(21), 4823–4846 (2011).
Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69(32), 175–186 (2000).
Burke, R., Hammond, K.J., Young, B.C.: The findme approach to assisted browsing. IEEE Expert: Intelligent Systems and Their Applications 12(4), 32–40 (1997).
De Campos, L.M., Fernandez-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks. International Journal of Approximate Reasoning 51(7), 785–799 (2010).
Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York, NY, USA (1991).
Dantas Bezerra, B.L., Tenorio de Carvalho, F.A.: A symbolic approach for content-based information filtering. Information Processing Letters 92(1), 45–52 (2004).
De Campos, L.M., Fernandez-Luna, J.M., Huete, J.F.: A collaborative recommender system based on probabilistic inference from fuzzy observations. Fuzzy Sets and Systems 159(12), 1554–1576 (2008).
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005).
Franke, N., Schreier, M., Kaiser, U.: The “I designed it myself” effect in mass customization. Management Sciences 56(1), 125–140 (2010).
Burke, R.: Interactive critiquing for catalog navigation in E-commerce. Artificial Intelligence Review 18(3-4), 245–267 (2002).
Burke, R.: Hybrid web recommender systems. In The adaptive web, pp. 377–408 (2007).
Bilbao, J., Bilbao, I., Feniser, C.: Generalized Delta Rule with Entropy Error Function. Acta Technica Napocensis - Applied Mathematics, Mechanics and Engineering 60(2), 165–170 (2017).
Bridge, D., Ferguson, A.: An expressive query language for product recommender systems. Artificial Intelligence Review 18(3-4), 269–307 (2002).
Zhu, J., Ge, Z., Song, Z., Gao, F.: Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Annual Reviews in Control 46, 107–133 (2018).
Knorr, E.M.: Outliers and data mining: finding exceptions in data. University of British Columbia, (2002). doi: 10.14288/1.0051497
Mishra, S., Chawla, M.: A comparative study of local outlier factor algorithms for outliers detection in data streams. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 813. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1498-8_31
Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W.: Robust statistics, the approach based of influence functions. Wiley. (1986).
Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier Detection for Temporal Data: A Survey. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2250–2267, (2014). doi: 10.1109/TKDE.2013.184
Castejón Limas, M., Ordieres Meré, J.B., Martínez de Pisón Ascacibar, F.J., Vergara González, E.P.: Outlier detection and data cleaning in multivariate non-normal samples. The PAELLA algorithm. Data Mining and Knowledge Discovery, 9, 171–187, (2004).
Rousseeuw, P.J., Leroy, A.: Robust Regression and Outlier Detection: Diagnostic Regression Analysis. New York: John Wiley and Sons (1987).
Ahmed, M., Farag, A.: A neural approach to zoom-lens camera calibration from data with outliers. Image and Vision Computing, 20, 619–630 (2002).
Chuang, C., Su, S., Hsiao, C.: The annealing robust backpropagation (ARBP) learning algorithm. IEEE Transactions on Neural Networks, 11(5), 1067–1077 (2000).
Wang, B., Mao, Z.: Outlier detection based on a dynamic ensemble model: Applied to process monitoring. Information Fusion, 51, 244–258, (2019). doi: 10.1016/j.inffus.2019.02.006
Wang, X.Z.: Data Mining and Knowledge Discovery For Process Monitoring and Control. Advances in Industrial Control. Ed. Springer. London, (1999).
Sebzalli, Y.M., Wang, X.Z.: Knowledge discovery from process operational data using PCA and fuzzy clustering. Engineering Applications of Artificial Intelligence, 14 (2001).
Refbacks
- There are currently no refbacks.