CONTRIBUTION TO THE STUDY OF THE INFLUENCE OF CUTTING TEMPERATURE IN HARD TURNING
Abstract
The rise in temperature during a machining process is due to a combined effect of the phenomena of dissipation of plastic energy in different zones of deformation and the phenomena of friction. Knowledge of the temperature in machining allows the development of new cutting tools (composition of the material of the tool, geometry, coating, etc.), the increase in tool life in order to reduce the cost of production industrial. In hard turning and by the very principles of cutting, which are quite different than for the usual turning of untreated materials, very high temperatures appear during work (between 500 ° and 1500 ° depending on the case) in the areas contact between cutting edge and workpiece. This leads to softening of the machined material in the areas of contact with the tool. The first factor is the thermal conductivity of the cutting material. For finishing work, a cutting material with low thermal conductivity is the first choice. The temperature during the cutting process is transferred to the shear zone, this which improves the cutting process.
Full Text:
PDFReferences
Battaglia. J-L, et all, Modélisation du comportement thermique d'un outil de fraisage : approche par identification de système non entierthermal modelling of a milling tool, a noninteger system identification approach. Comptes Rendus Mecanique, 330(12):857–864, December 2002.
Amri. B, Contribution à l’étude du comportement des matériaux modernes pour outils coupants, Thèse, INSA-Lyon, pp 43-44, 1987.
Bacci. M, J, Wallbank J, Cutting temperature prediction and measurement methods-a review, J. Mater. Process. Technol. N°88, pp195-202, 1999.
Bourdim. M , Contribution à l’étude de l’intégrité de l’état de surface usinée en tournage dur, Thèse de doctorat, ENSET Oran 2013.
Andonov. I, Bekech. Y, Analyse et synthèse des processus technologiques en construction mécanique, Technica, Sofia 1984.
Barlier. C, Girardin L. Mémothech-matériaux et usinage, Editions Casteilla, pp 137-140, 1992.
Peigne G, Etude et simulation des effets dynamiques de la coupe sur la stabilité de la coupe et la qualité géométrique de la surface usinée, application au fraisage de profil, Mémoire de docteur, Institut polytechnique de Grenoble 2003.
K. Saxena, M. Bellotti, J. Qian, D. Reynaerts, B. Lauwers and X. Luo, “Overview of Hybrid Machining,” in Hybrid Machining, Academic Press, 2018, pp. 21-41.
E. Brinksmeier and W. Preuss, “Micromachining ultra - precision engineering from physics to manufacturing”, Royal Society, 2012.
S. Kunar and B. Bhattacharyya, “Investigation into fabrication of microslots arrays by electrochemical micromachining,” Machinig Science and Technology, vol. 23, no. 4, pp. 629-649, 2019.
S. e. a. Choi, “Fabrication of WC microshaft by using electrochemical etching,” The International Journal of Advanced Manufacturing Technology, vol. 31, no. 7, pp. 682-687, 2007.
T. Kurita, K. Chikamori, S. Kubota and M. Hattori, “A study of three-dimensional shape machining with an ECμM system,” International Journal of Machine Tools and Manufacture, vol. 46, no. 12-13, pp. 1311- 1318, 2006.
Refbacks
- There are currently no refbacks.