MATHEMATICAL MODELING IN PEM FUEL CELLS

Constantin Albert DUMITRACHE

Abstract


In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active zones, and the removal of the reaction products are realized using a combination of channels and porous diffusion layers. In order to improve existing mathematical and numerical models of PEM fuel cells, a deeper understanding of the coupling of the flow processes in the channels and diffusion layers is necessary. We will discuss mathematical models for PEM fuel cells, the work will focus on the description of the coupling of the free flow in the channel region with the filtration velocity in the porous diffusion

Key words: Stokes and Darcy equations, Beaver-Joseph condition, proton exchange membrane

Full Text:

PDF

References


G. Beavers and D. Joseph, Boundary conditions at a naturally impermeable wall, J. Fluid. Mech, 30 (1967), pp. 197-207.

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991

M. Ehrhardt, An Introduction to Fluid-Porous Interface, Coupling , Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

Fuhrmann, J., Zhao, H., Holzbecher, E., Langmach, H., 2008, Flow, transport, and reactions in a thin layer flow cell, J. Fuel Cell Sci. Techn., vol. 5, pp. 021008/1-021008/10

Galvis and M. Sarkis. Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electon. Trans. Numer. Anal., 26:350–384, 2007

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer—Verlag, Berlin, 1986

Iliev, O., Laptev, V., 2004, On numerical simulation of flow through oil filters, Comput. Visual. Sci., vol.6, pp. 139-146

Fuhrmann, J., Zhao, H., Holzbecher, E., Langmach, H., Chojak, M., Halseid, R., Jusys, Z., Behm, R., 2008, Experimental and numerical model study of the limiting current in a channel flow cell with a circular electrode, Phys. Chem. Chem. Phys., vol. 10, pp. 3784-3795

W.L. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous media. SIAM J. Num. Anal., 40:2195–2218, 2003

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations,Vol. I, Springer-Verlag, New York, 1994

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer—Verlag, New York-Heidelberg, 1972

R. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic prob¬lems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer—Verlag, New York, 1977, pp. 292—315

J. Serrin, Principles of Classical Fluid Mechanics, in Handbuch der Physik, B. 8/1, Springer-Verlag, Berlin, 1959, pp. 125—263

J. M. Thomas, Sur lanalyse numérique des méthodes d'éléments finis hybrides et mixtes, These de Doctorat d etat, Universite Pierre et Marie Curie (Paris 6), Paris, 1977


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :