FROM DATA TO DECISIONS: THE IMPORTANCE OF MONITORING ML SYSTEMS IN INDUSTRIAL SETTINGS
Abstract
Full Text:
PDFReferences
E. Breck, S. Cai, E. Nielsen, M. Salib, D. Sculley, The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction, Proceedings of IEEE Big Data, 2017.
A. -I. Argesanu, G. -D. Andreescu, A Platform to Manage the End-to-End Lifecycle of Batch-Prediction Machine Learning Models, 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), 2021, pp. 329-334.
C. Sridharan, Distributed Systems Observability, O'Reilly Media, Inc., 2018, ISBN 9781492033424.
S. Shankar, A. Parameswara, Towards Observability for Machine Learning Pipelines, 2021, https://arxiv.org/abs/2108.13557.
Y. Wu, E.D. Yinjun, S.B. Davidson. DeltaGrad: Rapid retraining of machine learning models, International Conference on Machine Learning, 2020.
E.D. Nascimento, I., Ahmed, E. Oliveira, M.P. Palheta, I. Steinmacher, T.U. Conte, Understanding Development Process of Machine Learning Systems: Challenges and Solutions, 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 1-6, 2019.
S. Shankar, R. Garcia, J.M. Hellerstein, A.G. Parameswaran. Operationalizing machine learning: An interview study, arXiv preprint arXiv:2209.09125 (2022).
Crack capabilities overview, Process & Pipeline Services, accessed June 2023, https://www.bakerhughes.com/sites/bakerhughes/files/2020-07/19004_BH_PPS_ILI_US_BRO_1912%20%28CRACK%20CAPAB%29.pdf
G. Nguyen, S. Dlugolinsky, M. Bobák, et al. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey, Artif Intell Rev 52, 77–124 (2019), https://doi.org/10.1007/s10462-018-09679-z
P. Baier, S. Dragiev, Challenges in Live Monitoring of Machine Learning Systems, The Upper-Rhine Artificial Intelligence Symposium UR-AI 2021, ARTIFICIAL INTELLIGENCE - APPLICATION IN LIFE SCIENCES AND BEYOND, 2021.
Refbacks
- There are currently no refbacks.