SEGMENTATION AND RECONSTRUCTION OF ABDOMINAL AORTIC ANEURYSM SURFACE MODELS TOWARDS THE CREATION OF IN SILICO PATIENT COHORTS

Christos MANOPOULOS, Anastasios RAPTIS, Christos PLAVOUKOS, Evangelia KRINI, Vasiliki PERIVOLIOTI, Vaia Despoina KARAGEORGOU, Konstantinos MOULAKAKIS, Ioannis KAKISIS, Nikolaos VAXEVANIDIS

Abstract


The aim of this study was to create a repository consisting of 3D surface models of abdominal aortic aneurysms (AAA) before and after endovascular aneurysm repair (EVAR). Computed tomography scans of 14 patients were utilized for this purpose. The workflow involved segmenting and reconstructing the medical images using Mimics software, along with several post-processing steps for surface refinement. The AAA cases encompassed the suprarenal abdominal aorta, including the celiac axis, superior mesenteric artery, and renal arteries, as well as the infrarenal abdominal aorta, including the aortic bifurcation and the common iliac arteries. The collection of patient-specific 3D AAA models will aid in the creation of virtual patient cohorts using statistical shape modeling and machine/deep learning algorithms. These models will help identify correlations between nonstandard morphometrics and clinical events, such as AAA rupture and post-EVAR complications.


Full Text:

PDF

References


Sakalihasan, N., Limet, R., Defawe, O., Abdominal aortic aneurysm, The Lancet, vol. 365, no. 9470, pp. 1577–1589, 2005, https://doi.org/10.1016/s0140-6736(05)66459-8.

Ullery, B.W., Hallett, R.L., Fleischmann, D., Epidemiology and contemporary management of abdominal aortic aneurysms, Abdom. Radiol., vol. 43, pp. 1032–1043, 2018.

Singh, K., Bønaa, K.H., Jacobsen, B.K., Bjørk, L., Solberg, S., Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: The Tromsø Study, Am. J. Epidemiol., vol. 154, no. 3, pp. 236–244, 2001.

Boll, A.P.M., Verbeek, A.L.M., Van de Lisdonk, E.H., Van der Vliet, J.A., High prevalence of abdominal aortic aneurysm in a primary care screening programme, J. Br. Surg., vol. 85, no. 8, pp. 1090–1094, 1998.

Naylor, A.R., et all. European society for vascular surgery (ESVS) 2023 Clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease, Eur. J. Vasc. Endovasc. Surg., 2022, https://doi.org/10.1016/j.ejvs.2022.04.011

White, V., Wyatt, M., Endovascular treatment of abdominal aortic aneurysms, Surg. Oxf., vol. 33, no. 7, pp. 334–339, 2015, https://doi.org/10.1016/j.mpsur.2015.04.004.

Wu, J., Hu, Q., Ma, X., Comparative study of surface modeling methods for vascular structures, Comput. Med. Imaging Graph., vol. 37, no. 1, pp. 4–14, Jan. 2013, https://doi.org/10.1016/j.compmedimag.2013.01.002.

Xenos, M., Rambhia, S.H., Alemu, Y., Einav, S., Labropoulos, N., Tassiopoulos, A., Ricotta, J.J., Bluestein, D., Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling, Ann. Biomed. Eng., vol. 38, no. 11, pp. 3323–3337, 2010, https://doi.org/10.1007/s10439-010-0094-3.

Shum, J., Martufi, G., Martino, E.D., Washington, C.B., Grisafi, J., Muluk, S.C., Finol, E.A., Quantitative Assessment of Abdominal Aortic Aneurysm Geometry, Ann. Biomed. Eng., vol. 39, no. 1, pp. 277–286, 2011, https://doi.org/10.1007/s10439-010-0175-3.

Humphrey, J.D., Holzapfel, G.A., Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms, J. Biomech., vol. 45, no. 5, pp. 805–814, 2012, https://doi.org/10.1016/j.jbiomech.2011.11.021.

Gasser, T.C., Miller, C., Polzer, S., Roy, J., A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments, Int. J. Numer. Methods Biomed. Eng., p. e3587, 2022, https://doi.org/10.1002/cnm.3587.

Moulakakis, K.G., Kakisis, J., Gonidaki, E., Lazaris, A.M., Tsangaris, S., Geroulakos, G., Manopoulos, C., Comparison of Fluid Dynamics Variations Between Chimney and Fenestrated Endografts for Pararenal Aneurysms Repair: A Patient Specific Computational Study as Motivation for Clinical Decision-Making., Vasc. Endovascular Surg., vol. 53, no. 7, pp. 572–582, 2019, https://doi.org/10.1177/1538574419867531.

Willson, K., Atala, A., Medical 3D Printing: Tools and Techniques, Today and Tomorrow, Annu. Rev. Chem. Biomol. Eng., vol. 13, no. 1, 2022, https://doi.org/10.1146/annurev-chembioeng-092220-015404.

Coles-Black, J., Bolton, D., Chuen, J., Accessing 3D Printed Vascular Phantoms for Procedural Simulation, Front. Surg., vol. 7, p. 626212, 2021, https://doi.org/10.3389/fsurg.2020.626212.

Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G., A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Med. Image Anal., vol. 13, no. 6, pp. 819–845, Dec. 2009, https://doi.org/10.1016/j.media.2009.07.011.

Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G., User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, NeuroImage, vol. 31, no. 3, pp. 1116–1128, Jul. 2006, https://doi.org/10.1016/j.neuroimage.2006.01.015.

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R., 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network, Magn. Reson. Imaging, vol. 30, no. 9, pp. 1323–1341, Nov. 2012, https://doi.org/10.1016/j.mri.2012.05.001.

Schroeder, W., Martin, K., Lorensen, B., The visualization toolkit (4th ed.). Kitware, 2006.

Veldhuizen, W.A. van, Schuurmann, R.C.L., IJpma, F.F.A., Kropman, R.H.J., Antoniou, G.A., Wolterink, J.M., Vries, J.-P.P.M. de, A Statistical Shape Model of the Morphological Variation of the Infrarenal Abdominal Aortic Aneurysm Neck, J. Clin. Med., vol. 11, no. 6, p. 1687, 2022, https://doi.org/10.3390/jcm11061687.

Marone, E.M., Freyrie, A., Ruotolo, C., Michelagnoli, S., Antonello, M., Speziale, F., Veroux, P., Gargiulo, M., Gaggiano, A., Expert Opinion on Hostile Neck Definition in Endovascular Treatment of Abdominal Aortic Aneurysms (a Delphi Consensus), Ann. Vasc. Surg., vol. 62, pp. 173–182, Jan. 2020, https://doi.org/10.1016/j.avsg.2019.05.049.

Mantas, G.K., Antonopoulos, C.N., Sfyroeras, G.S., Moulakakis, K.G., Kakisis, J.D., Mylonas, S.N., Liapis, C.D., Factors Predisposing to Endograft Limb Occlusion after Endovascular Aortic Repair, Eur. J. Vasc. Endovasc. Surg., vol. 49, no. 1, pp. 39–44, 2015, https://doi.org/10.1016/j.ejvs.2014.09.012


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :