EVALUATION OF SEED FLOW UNIFORMITY DISTRIBUTED BY SEED DRILL INCLINED FLUTED ROLLER AT COMPUTER AIDED INSTALATION
Abstract
Full Text:
PDFReferences
Lezoche, M., Hernandez, J., Alemany D., Maria del Mar E., Panetto, H., Kacprzyk J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. In: Global Food Security: Elsevier B.V., vol. 117, 103187. https://doi.org/10.1016/j.compind.2020.103187.
Sugirbay, A. M., Zhao, J., Nukeshev, S. O., & Chen, J. (2020). Determination of pin-roller parameters and evaluation of the uniformity of granular fertilizer application metering devices in precision farming. Computers and Electronics in Agriculture, 179, 105835. https://doi.org/10.1016/J.COMPAG.2020.105835.
Xi, X., Gu, C., Shi, Y., Zhao, Y., Zhang, Y., Zhang, Q., Jin, Y., & Zhang, R. (2020). Design and experiment of no-tube seeder for wheat sowing. Soil and Tillage Research, 204, 104724. https://doi.org/10.1016/J.STILL.2020.104724.
Xie, C., Yang, L., Zhang, D., Cui, T., Zhang, K., He, X., & Du, Z. (2022). Design of smart seed sensor based on microwave detection method and signal calculation model. Computers and Electronics in Agriculture, 199, 107178. https://doi.org/10.1016/J.
COMPAG.2022.107178.
Xie, C., Zhang, D., Yang, L., Cui, T., Yu, T., Wang, D., & Xiao, T. (2021). Experimental analysis on the variation law of sensor monitoring accuracy under different seeding speed and seeding spacing. Computers and Electronics in Agriculture, 189, 106369. https://doi.org/10.1016/J.COMPAG.2021.106369.
Gheorghița, A., Serbin, V. (2013). Influenţa unghiului de orientare a canelurilor asupra masei seminţelor distribuite la aparatele de distribuţie cu cilindru canelat. Chişinău : s.n., 2013. pp. 108-112. ISSN 1857-0003.
Gheorghița, A. (2013). Rezultatele testării în cîmp a aparatului de distribuție cu cilindri canelați modernizați. Chișinău: Centrul editorial al UASM, 2013. pp. 83-87. Vol. 38. ISBN 978-9975-64-125-8.
Gheorghiţa, A., Serbin, Vl., Bumacov, V., Gorobeţ, Vl., Gadibadi, M. (2015). Aparat de semănat cu cilindru canelat. 989 Moldova, 06 02, 2015. BOPI nr. 1/2016.
Klerkx, L., Rose, D. (2020). Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. In: International Journal: Elsevier B.V., vol. 24, pp. 100-107. ISSN 2211-9124. https://doi.org/10.1016/j.gfs.2019.100347.
Chen, C., He, P., Zhang, J., Li, X., Ren, Z., Zhao, J., He, J., Wang, Y., Liu, H., & Kang, J. (2018). A fixed-amount and variable-rate fertilizer applicator based on pulse width modulation. Computers and Electronics in Agriculture, 148, 330–336. https://doi.org/10.1016/J.COMPAG.2018.03.033.
He, X., Cui, T., Zhang, D., Wei, J., Wang, M., Yu, Y., Liu, Q., Yan, B., Zhao, D., & Yang, L. (2017). Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm. Computers and Electronics in Agriculture, 136, 184–192. https://doi.org/10.1016/J. COMPAG.2017.01.028.
He, X., Ding, Y., Zhang, D., Yang, L., Cui, T., & Zhong, X. (2019). Development of a variable-rate seeding control system for corn planters Part I: Design and laboratory experiment. Computers and Electronics in Agriculture, 162, 318–327. https://doi.org/10.1016/J. COMPAG.2019.04.012.
Hu, J., Zhao, X., Liu, W., Yao, M., & Zhao, J. (2021). Development of a Seeding Control Method Based on Seed Height in the Hopper of a Precision Wheat Drill. Applied Engineering in Agriculture, 37(6), 1131–1138. https://doi.org/10.13031/AEA.14441.
Huang, J. Y., Yang, L. W., Zhang, J. Q., Hu, H., & Liu, G. (2021). Granular Fertilizer Mass Flow Measurement and Vehicle Experiments Based on Microwave Doppler Method. Applied Engineering in Agriculture, 37(1), 135–147. https://doi.org/ 10.13031/AEA.14013.
Jiang, M., Liu, C., Du, X., Huang, R., Dai, L., & Yuan, H. (2021). Research on continuous granular material flow detection method and sensor. Measurement, 182, 109773. https://doi.org/10.1016/J.MEASUREMENT.2021.109773.
Karayel, D., Šarauskis, E., & Aktaş, A. (2022). Design and Experiment of a Helicoidal Seed Tube to Improve Seed Distribution Uniformity of Seed Drills. Processes 2022, Vol. 10, Page 1271, 10(7), 1271. https://doi.org/10.3390/PR10071271.
Karayel, D., Wiesehoff, M., Özmerzi, A., & Müller, J. (2006). Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system. Computers and Electronics in Agriculture, 50(2), 89–96. https://doi.org/10.1016/J.COMPAG.2005.05.005.
Karimi, H., Navid, H., Besharati, B., Behfar, H., & Eskandari, I. (2017). A practical approach to comparative design of non-contact sensing techniques for seed flow rate detection. Computers and Electronics in Agriculture, 142, 165–172. https://doi.org/10.1016/J.COMPAG.2017.08.027.
Kuş, E. (2021). Seed Damage Test for Roller-Type Device Designed at Different Flute Helical Angles. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(3), 495–502. https://doi.org/10.24180/IJAWS.938870.
Serbin, V., Gheorghiţa, A. (2019). Theoretical researches of seed movement in radial seed tube. In: Ştiinţa Agricolă, nr. 2, pp. 103-108. ISSN 1857-0003. DOI: 10.5281/zenodo.3611185
Gheorghiţa, A. (2020). Influence of seed tube inclination angle and air velocity on the seed flow dosed by devices with fluted rolle. In: Ştiinţa Agricolă, nr. 2, pp. 85-90. ISSN 1857-0003. DOI: 10.5281/zenodo.4321214
Refbacks
- There are currently no refbacks.