EFFECT OF THE INFILL PATTERN ON SOUND ABSORPTION PROPERTIES AND SOME MECHANICAL PROPERTIES OF 3D PRINTED PARTS
Abstract
Full Text:
PDFReferences
Lee, J.Y., An, J. and Chua, C.K., 2017. Fundamentals and applications of 3D printing for novel materials. ISSN: 2352-9407, Applied materials today, 7, pp.120-133.
Patra, S. and Young, V., 2016. A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell biochemistry and biophysics, ISSN: 1085-9195, 74, pp.93-98.
Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q. and Shi, Y., 2018. A review of 3D printing technology for medical applications. Engineering, ISSN: 2095-8099, 4(5), pp.729-742.
Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., Wang, L., Ding, T., Duan, Z. and Du, S., 2021. Large-scale 3D printing concrete technology: Current status and future opportunities. Cement and Concrete Composites, ISSN: 0958-9465, 122, p.104115.
Shahrubudin, N., Lee, T.C. and Ramlan, R.J.P.M., 2019. An overview on 3D printing technology: Technological, materials, and applications. ISSN: 2351-9789, Procedia Manufacturing, 35, pp.1286-1296.
Gunasekaran, K.N., Aravinth, V., Kumaran, C.M., Madhankumar, K. and Kumar, S.P., 2021. Investigation of mechanical properties of PLA printed materials under varying infill density. Materials Today: Proceedings, ISSN 2214-7853, 45, pp.1849-1856.
Maszybrocka, J., Dworak, M., Nowakowska, G., Osak, P. and Łosiewicz, B., 2022. The influence of the gradient infill of PLA samples produced with the FDM technique on their mechanical properties. eISSN:1996-1944 Materials, 15(4), p.1304.
Tao, Y., Kong, F., Li, Z., Zhang, J., Zhao, X., Yin, Q., Xing, D. and Li, P., 2021. A review on voids of 3D printed parts by fused filament fabrication. ISSN: 2238-7854, Journal of Materials Research and Technology, 15, pp.4860-4879.
Vasina, M.; Monkova, K.; Monka, P.P.; Kozak, D.; Tkac, J. Study of the Sound Absorption Properties of 3D-Printed Open-Porous ABS Material Structures. Polymers, ISSN 2073-4360, 2020, 12, 1062.
Zielinski, T. G.; Dauchez, N.; Boutin, T.; Leturia, M.; Wilkinson, A.; Chevillotte, F.; Becot, F.-X.; Venegas, R. Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials. Appl. Acoust., ISSN: 0003-682X, 2022, 197, 108941.
Sailesh, R,; Yuvaraj, L.; Doddamani, M.; Mailan Chinnapandi, L.B.; Pitchaimani, J. Sound absorption and transmission loss characteristics of 3D printed bio-degradable material with graded spherical perforations. Appl. Acoust., ISSN: 0003-682X, 2022, 186, 108457.
Sailesh, R.; Yuvaraj, L.; Pitchaimani, J.; Doddamani, M.; Mailan Chinnapandi, L.B. Acoustic Behaviour of 3D Printed Bio-Degradable Micro-Perforated Panels with Varying Perforation Cross-Sections. Appl. Acoust. ISSN: 0003-682X, 2021, 174, 107769.
Gao, N.; Hou, H. Sound absorption characteristic of micro-helix metamaterial by 3D printing. ISSN:2095-0349, Theor. Appl. Mech. Lett. 2018, 8, 63–67.
Kosała, K., 2022. Experimental tests and prediction of insertion loss for cubical sound insulating enclosures with single homogeneous walls. Applied Acoustics, ISSN: 0003-682X, 197, p.108956.
Khosravani, M.R. and Reinicke, T., 2021. Experimental characterization of 3D-printed sound absorber. European Journal of Mechanics-A/Solids, ISSN: 0997-7538, 89, p.104304.
Yang, W., Bai, X., Zhu, W., Kiran, R., An, J., Chua, C.K. and Zhou, K., 2020. 3D printing of polymeric multi-layer micro-perforated panels for tunable wideband sound absorption. Polymers, ISSN 2073-4360, 12(2), p.360.
Liu, Z., Zhan, J., Fard, M. and Davy, J.L., 2017. Acoustic measurement of a 3D printed micro-perforated panel combined with a porous material., ISSN: 0263-2241 Measurement, 104, pp.233-236.
Wang, C., Huang, L. and Zhang, Y., 2014. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern. Journal of Sound and Vibration, ISSN: 0022-460X 333(25), pp.6828-6842.
Kumar Mishra, P., Ponnusamy, S. and Reddy Nallamilli, M.S., 2021. The influence of process parameters on the impact resistance of 3D printed PLA specimens under water-absorption and heat-treated conditions. ISSN 2214-8604, Rapid Prototyping Journal, 27(6), pp.1108-1123.
Thakar, C.M., Parkhe, S.S., Jain, A., Phasinam, K., Murugesan, G. and Ventayen, R.J.M., 2022. 3d Printing: Basic principles and applications. ISSN: 2214-7853, Materials Today: Proceedings, 51, pp.842-849.
Sekar, V., Eh Noum, S.Y., Sivanesan, S., Putra, A., Chin Vui Sheng, D.D. and Kassim, D.H., 2022. Effect of thickness and infill density on acoustic performance of 3D printed panels made of natural fiber reinforced composites. ISSN: 1544-0478 Journal of Natural Fibers, 19(13), pp.7132-7140.
Boulvert, J.; Costa-Baptista, J.; Cavalieri, T.; Perna, M.; Fotsing, E.R.; Romero-García, V.; Gabard, G.; Ross, A.; Mardjono, J.; Groby, J.-P. 2020, Acoustic modeling of micro-lattices obtained by additive manufacturing. Appl. Acoust. 164, 107244.
Liu, Z.Q.; Zhan, J.X.; Fard, M.; Davy, J.L. 2017, Acoustic measurement of a 3D printed micro-perforated panel combined with a porous material. Measurement 104, 233–236.
Opiela, K. C.; Zieliński, T. G.; Attenborough, K. 2022, Limitations on validating slitted sound absorber designs through budget additive manufacturing. Materials & Design. 218, 110703.
Refbacks
- There are currently no refbacks.