ANALYSIS OF THE THERMAL EXPANSION COEFFICIENT OF ANISOTROPIC SOLIDS: APPLICATION TO CALCIUM SILICATE – PART I – INTRODUCTION TO MEASUREMENT METHODOLOGY

Adrian-Ioan BOTEAN

Abstract


This paper aims determining the linear thermal expansion coefficient (CTE) of calcium silicate using an optical method for measuring deformations called digital image correlation method (DIC). DIC provides full-field in-plane deformation fields of the test planar specimen surface by comparing the digital images of the specimen surface acquired before and after deformation. The samples evaluated in this paper are two calcium silicate plates: a square one (with sides of 50x50 mm and 3 mm of thickness) and a circular one (with a diameter of 50 mm and a thickness of 3 mm). The measuring set-up developed includes a simple heating device, thermal sensors and a thermo-camera for real-time temperature measurement and monitoring of the sample and a 2D and 3D-DIC measuring system. The study is carried out during two stages: Part I – Introduction to the measurement methodology and Part II – Evaluation of the experimental data.

Full Text:

PDF

References


Zheng, Q., Chung, D.O.L., Microporous calcium silicate thermal insulator, Mat. Sci. and Technology, Vol.6, Issue 7, 1990.

Rogers, P.S., Weston, R.M., Anisotropic properties of unidirectionally crystallized calcium metasilicate, J. of Mat. Sci., 14, 1192-1206, 1979.

Tu, Y., Shi, P., Liu, D., Wen, R., Yu, Q., Sas, G., Elfgren, L., Mechanical properties of calcium silicate hydrate under uniaxial and biaxial strain conditions: a molecular dynamics study, Physical Chemistry Chemical Physics, Issue 2, https://doi.org/10.1039/D1CP04474E, 2022.

Ji, Q., Pellenq, R.J.-M., Van Vliet, K.J., Comparison of computational water models for simulation of calcium-silicate-hydrate, Computational Mat. Sci., 53, 234-240, https://doi.org/10.1016/j.commatsci. 2011.08.024, 2012.

Ingham, J.P., Geomaterials Under the Microscope, Academic Press, ISBN 978-0-12-407230-5, https://doi.org/10.1016/C2012-0-01197-0, 2012.

Georgiev, D., Bogdanov, B., Hristov, Y., Markovska, I., Angelova, K., Aidan, A., Building Material from Calcium Silicate – Preparation and Properties, IMS/4 Int. Conf. on the Aplications of Traditional & High Performance Materials in Harsh Environment, https://www.researchgate.net/ publication/322211405 Building Material from Calcium Silicate Preparation and Properties, 2010.

Wang, W., Zheng, Q., Calcium silicate based high efficiency thermal insulation, British Ceramic Transactions, Vol.99, Issue 4, https://doi.org/10.1179/096797800680 929, 2000.

https://theconstructor.org/building/calcium-silicate-bricks-masonry-construction/17256/

https://insulation.org/io/articles/insulation-materials-calcium-silicate-block-and-pipe/

Hall, M.R., Materials for energy efficiency and thermal comfort in buildings, 1st Edition, Elsevier, Ebook ISBN: 9781845699277, 2010.

Munteanu, I.-R., Szava, I., Galfi, P.B., Ambrus, C., Orban, P., Solutions for improving the load-bearing capacity of resistance structures in case of fires, 14th Int. Conf. – multidisciplinary, professor Dorin Pavel – the founder of romanian hydropower, https://stiintasiinginerie.ro/wp-content/uploads/2014/07/25-86.pdf, 2014.

Xianyou, Z., Hong, Z.X., 2002, Study on the properties of the wollastonite short fiber-pvc cable insulation composition, Conference record of the 1996 IEEE International Symposium on Electrical Insulation, vol.2, 712-715, IEEE xplore, https://doi.org/ 10.1109/ elinsl.1996. 549444, 2002.

https://www.redseal.com/blog/2021/1/19/ how-calcium-silicate-insulates.

https://www.luyangwool.com/search/ calci um % 20silicate.html.

Prati, C., Gandolfi, M.G., Calcium silicate bioactive cements: biological perspectives and clinical applications, Dent Mater., 31 (4): 351-370, https://doi.org/10.1016/j.dental. 2016.01.004, 2015.

Persson, C., Engqvist, H., Premixed calcium silicate for endodontic applications: injectability, setting time and radiopacity, Biomatter 1 (1): 76-80, https://doi.org/ 10.4161/biom.1.1.16735.

Atmeh, A.R., Chong, E.Z., Richard, G., Festy, F., Watson, T.F., Dentin-cement interfacial interaction: calcium silicates and polyalkenoates, J Dent Res. 91 (5): 454-459, https://doi.org/ 10.1177/0022034512443068, 2012.

Shirazi, F.S., Mehrali, M., Oshkour, A.A., Metselaar, H.S., Kadri, N.A., Abu Osman, N.A., Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications, J Mech Behav Biomed Mater, 30:168-175, https://doi.org/j.jmbbm. 2013.10.024, 2014.

Zordan-Bronzel, C.L., Esteves Torres, F.F., Tanomaru-Filho, M., Chavez-Andrade, G.M., Bosso-Martelo, R., Guerreiro-Tanomaru, J.M., Evaluation of physicochemical properties of a new calcium silicate-based sealer, Bio-C Sealer, J. Endod., 45(10): 1248-1252, https://doi.org/j.joen.2019.07.006, 2019.

Shahi, S., Fakhri, E., Dizaj, S.M., Salatin, S., Sharifi, S., Rahimi, S., Portland cement: an overview as a root repair material: applications and various modifications, The Open Dentistry Journal, 16(1), https://doi.org/10.2174/18742106-v16-e221212-2022-54, 2022.

De Almeida, M.S., De Oliveira Fernandes, G.V., De Oliveira, A.M., Granjeiro, J.M., Calcium silicate as a graft material for bone fractures: a systematic review, J Int Med Res, 46(7): 2537-2548, https://doi.org/10.1177/ 0300060518770940, 2018.

Wang, G.C., Lu, Z.F., Zreiqat, H., 8 – bioceramics for skeletal bone regeneration, Bone Substituite Biomaterials, 180-186, https://doi.org/10.1533/9780857099037.2.180, 2014.

Wei, K., Peng., Y., Qu, Z., Zhou, H., Pei, Y., Fang, D., Lightweight composite lattice cylindrical shells with novel character of taylorable thermal expansion, International Journal of Mechanical Sciences 137, 77-85, https://doi.org/10.1016/j.ijmecsci.2018.01.017, 2018.

Toropova, M.M., Steeves, C.A., Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satelluite structures, Acta Astronautica 113, 132-141, http://dx.doi.org/10.1016/j.actaastro.2015.03.022, 2015.

Drebushchak, V.A., Thermal expansion of solids: review on theories, Journal of Thermal Analysis and Calorimetry, 142:1097-1113, https://doi.org/10.1007/ s109 73 -020-09370-y, 2020.

Morgan, W.C., Thermal expansion coefficients of graphite crystals, Carbon, Vol.10, 73-79, Pergamon Press, 1972.

Pluta, Z., Hryniewicz, T., Thermal expansion of solids, Journal of Modern Physics, 3, 793-802, http://dx.doi.org /10.4236/jmp.2012.38104, 2012.

Wang, H., Webb, T., Bitler, J.W., Study of thermal expansion and thermal conductivity of cemented WC-Co composite, International Journal of Refractory Metals and Hard Materials 49, 170 – 177, http://dx.doi.org /10.1016/j.ijrmhm.2014.06.009, 2015.

Serway, R.A., Jewett, J.W., Physics for scientists and engineers book, 6th edition Thomson Brooks/Cole, p.586, Chapter 19, 2004.

Johnson, R.R., Kural, M.H., Mackey, G.B., Thermal expansion properties of composite materials, NASA Contractor Report 165632.

Klemens, P.G., Thermal expansion of composites, International Journal of Thermophysics, Vol.7, No.1, Plenum Publishing Corporation, 1986.

Klemens, P.G., Thermal expansion of composites, International Journal of Thermophysics, Vol.9, No.2, Plenum Publishing Corporation, 1988.

Jang, J.-S., Varischetti, J., Lee, G.W., Suhr, J., Experimental and analytical investigation of mechanical damping and CTE of both SiO2 perticle and carbon nanofiber reinforced hybrid epoxy composites, Composites: Part A 42, 98-103, https://doi.org/10.1016/j.compositesa.2010.10.008, 2011.

Lincoln, D.M., Vaia, R.A., Beown, J.M., Benson Tolle, T.H., Revolutionary nanocomposite materials to enable space systems in the 21st century, IEEE Aerospace Conference Proceedings, 4, 183-192, https://doi.org/10.1109/AERO.2000.878401, 2000.

Pradere, C., Sauder, C., Transverse and longitudinal coefficient of thermal expansion of carbon fibers temperatures (300-2500 K), Carbon 46, 1874 - 1884, https://doi.org/ 10.1016/j.carbon. 2008.07.035, 2008.

Das, D., Jacobs, T., Barbour, L., Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material, Nature Mater., 9, 36–39, https://doi.org/10.1038/ nmat2583, 2010.

Wei, K,, Peng, Y., Wang, K., Duan, S., Yang, X., Wen, W., Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion, Composite Structures 188, 287 – 296, https://doi.org/10.1016/j.compstruct. 2018.01.030, 2018.

Xu, H., Farag, A., Pasini, D., Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal expansion, Acta Materialia 137, 155 – 166, http://dx.doi.org/ 10.1016/ j.actamat. 2017 .05 .059, 2017.

Takenaka, K., Negative thermal expansion materials: technological key for control of thermal expansion, Sci. Technol. Adv. Mater. 13, 013001, https://doi.org /10.1088/1468-6996/13/0/013001, 2012.

Evans, J.S.O., Negative thermal expansion materials, J.Chem.Soc., Dalton Trans., 3317 – 3326, 1999.

Ai, L., Gao, X.-L., Metamaterials with negative Poisson’s ratio and non – positive thermal expansion, Composite Structures 162, 70 – 84, http://dx.doi.org/10.1016/ j.compstruct. 2016.11.056, 2017.

Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., Hashida, T., Negative axial thermal expansion coefficient of carbon nanotubes: Experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites, Carbon, 95, 904 – 909, http://dx.doi.org/10.1016/ j.carbon.2015.09.026, 2015.

Takezawa, A., Kobashi, M., Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimisation and additive manufacturing, Composites, Part B 131, 21-29, http://dx.doi.org/10.1016/ j.compositesb.2017.07.054, 2017.

Loser, R., Munch, B., Lura, P., A volumetric technique for measuring the coefficient of thermal expansion of hardening paste and mortar, Cement and Concrete Research 40, 1138-117, http://dx.doi.org/10.1016/j.cemconres.2010.03.021, 2010.

Loukili, A., Chopin, A., Khelidj, A., Le Touzo, J.-Y., A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history, Cement and Concrete Research 30, 915-922, 2000.

Wiesner, V.L., Bansal, N.P., Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass, Journal of the European Ceramic Society 35, 2907-2914, http://dx.doi.org/10.1016/ j.jeurceramsoc.2015.03.032, 2015.

Watanabe, H., Yamada, N., Okaji, M., Linear thermal expansion coefficient of silicon from 293 to 1000 K, International Journal of Thermophysics, Vol.25, No.1, 2004.

Enya, K., Yamada, N., Onaka, T., Nakagawa, T., Kaneda, H., Hirabayashi, M., Toulemont, Y., Castel, D., Kanai, Y., Fujishiro, N., High-precision CTE measurement of SiC-100 for cryogenic space telescopes, Publications of the Astronomical Society of the Pacific 119, 583-589, 2007.

Ravi, V., Firdosy, S., Caillat, T., Brandon, E., Van Der Walde, K., Maricic, L., Sayir, A., Thermal expansion studies of selected high-temperature thermoelectric materials, Journal of Electronic Materials, Vol.38, No.7, http://dx.doi.org/10.1007/s11664-009-0734-2, 2009.

Akikubo, K., Kurahashi, T., Kawaguchi, S., Tachibana, M., Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction, Carbon 169, 307-311, https://doi.org/10.1016/ j.carbon. 2020.07.027, 2020.

Kerstan, M., Muller, M., Russel, C., Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD), Materials Research Bulletin 46, 2456-2463, https://doi.org/ 10.1016/j.materresbull.2011.08.031, 2011.

Aleem, S.A.E., Heikal, M., Morsi, W.M., Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica, Construction and Building Materials 59, 151-160, http://dx.doi. org/10.1016/j.conbuildmat.2014.14.02.039, 2014.

Yeon, J.H.; Choi, S.; Won, M.C., In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development, Construction and Building Materials 38, 306-315, http://dx.doi.org/10.1016/j. conbuildmat.2012.07.111, 2013.

di Scalea, F.L., Measurement of thermal expansion coefficients of composites using strain gages, Experimental Mechanics, Vol.38, No.4, 233-241, 1998.

Niu, Y., Wang, J., Shao, S., Wang, H., Lee, H., Park, S.B., A comprehensive solution for electronic package’s reliability assessment with digital image correlation (DIC) method, Microelectronics Reliability 87, 81-88, https://doi.org/10.1016/j. microrel.2018.06.006, 2018.

Hoult, N.A., Take, W.A., Lee, C., Dutton, M., Experimental accuracy of two dimensional strain measurements using digital image correlation, Engineering Structures 46, 718-726, http://dx.doi.org/ 10.1016/j.engstruct.2012.08.018, 2013.

Bing, P., Hui-min, X., Tao, H., Asundi, A., Measurement of coefficient of thermal expansion of films using digital image correlation method, Polymer Testing 28, 75-83, 2009.

Mendes, S.S., Filho, J.C.A.D., Melo, A.R.A., Nunes, L.C.S., Determination of thermal expansion coefficient of a monofilament polyamide fiber using digital image correlation, Polymer Testing 87, 106540, https://doi.org/10.1016/j.poly mertesting.2020.106540, 2020.

Graciani, E., Justo, J., Zumaquero, P.L., Determination of in-plane and through-the-thickness coefficients of thermal expansion in composite angle brackets using digital image correlation, Composite Structures 238, 111939, https://doi.org/10.1016 /j.compstruct.220.111939, 2020.

Botean, A.I., Thermal expansion coefficient determination of polylactic acid using digital image correlation, E3S Web of Conferences 32, 01007, https://doi.org /10.1051/e3sconf/20183201007, 2018.

Herbst, C., Splitthof K., Q400 Application Note - T-Q400-Basics-3DCORR-002a-EN, Dantec Dynamics GmbH, Germany, www.dantecdynamics.com, 2006.

Sciammarella, C.A., Sciammarella, F.M., Experimental Mechanics of Solids, John Wiley & Sons, 2012.

Becker, T., Splitthof, K., Siebert, T., Kletting, P., Error Estimations of 3D Digital Image Correlation Measurements, Proceedings of SPIE, 634, art. no. 63410F, 2006.

Siebert, T., Becker, T., Spiltthof, K., Neumann, I., Krupka, R., Error estimations in digital image correlation technique, Applied Mechanics and Materials, vol. 7-8, p.265-270, 2007.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :