ENSURING THE SAFETY OF CLOSED ENCLOSURES BASED ON COMPUTATIONAL FLUID DYNAMICS ANALYSIS REGARDING THE MODELING OF CARBON MONOXIDE DISPERSION DYNAMICS
Abstract
Engaging in industrial activities necessitates the utilization, manipulation, or inadvertent occurrence of hazardous compounds, such as carbon monoxide. The occurrence of this gas in enclosed or partially enclosed areas can have a significant impact on the human body, and at elevated levels, it can result in fatality. Understanding the impact of carbon monoxide on the human body and its dispersion in the atmosphere is crucial for developing effective preventive strategies. This paper presents experiments and CFD (Computational Fluid Dynamics) modeling to establish the dynamics of carbon monoxide dispersion during the accumulation and evacuation stages in a closed enclosure. Toxic and explosive gas - carbon monoxide, discharged within a confined space, there was a display of relatively uniform accumulation phenomenon in the enclosure. The design of the kind of carbon monoxide spreading in the closed area showed a dilution focused on phenomena towards the suction mouths. Carbon monoxide has a high dilution capacity due to the rapid decrease in gas concentrations during the exhaust process.
Full Text:
PDFReferences
A., Roquain, J., Roques, C., Squinazi, F., Gertner, G.,;. (2011). Pollution de l’air intérieur de l’habitat. L.E.N. MÉDICAL, 2011.
ASHRAE Handbook : Fundamentals. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers). (2013). Atlanta, GA.
Bardina J., T. R. (2004). Web-based toxic gas dispersion model for shuttle launch operations (Modeling, Simulation, and Calibration of Space-based Systems 5420 ed.). doi:https://doi.org/10.1117/12.544853
Campbell, J.B., López-Martínez, G.,;. (2022). Anoxia elicits the strongest stimulatory protective response in insect low- oxygen hormesis, Current Opinion in Toxicology. doi:https://doi.org/10.1016/J.COTOX.2022.02.004.
Cioclea, D.,. (2020). Development of techniques and methods to prevent the formation of explosive and/or toxic atmospheres specific to industrial areas.
El Harbawi, M., Mustapha, S., Y Choong, T.S., Abdul Rashid, S., S A Kadir, S.A., Abdul Rashid, Z.,. (2008). Rapid analysis of risk assessment using developed simulation of chemical industrial accidents software package,. 2008, Int. J. Environ. Sci. Tech 5, 53–64, 53–64.
Erard, A.,. (2019.). Modelisation de la dispersion atmospherique des gaz toxiques et de la gene a la visibilite generes par les fumees d’un incendie.
Fisch, G., Iriart, P.G., Andrade Schuch, D., Couto Milanez, V. (2015). The Use of an Atmospheric Model for Study the Gas Dispersion at the Brazilian Space Launching Center, in: Ouwehand, L (Ed.). Proceedings of the 22nd ESA Symposium on European Rocket .
Garcia Párraga, D., Moore, M., Fahlman, A. (2018). Pulmonary ventilation–perfusion mismatch: a novel hypothesis for how diving vertebrates may avoid the bends. Proceedings of the Royal Society B: Biological Sciences 285. doi:https://doi.org/10.1098/RSPB.201
Goodfellow, H.D., Kosonen, Risto.,. (2020). Industrial ventilation design guidebook (Vol. 1). Volume 1, Fundamentals.
Grodins, F.S., Gray, J.S., Schroeder, K.R., Norins, A.L., Jones, R.W.,. (1954). Respiratory Responses to CO2 Inhalation. A Theoretical Study of a Nonlinear Biological Regulator. doi:https://doi.org/10.1152/jappl.1954.7.3.283 7, 283–308. https://doi.org/10.11
Guillemaud, V. (2007). Modélisation et simulation numérique des écoulements diphasiques par une approche biflu- ide à deux pressions. Mathematique.
Hostikka, S., Mcgrattan, K.B., Hamins, A.,. (2003,). Numerical modeling of pool fires using LES and finite volume method for radiation . International Association for Fire Safety Science , 383–394.
Khan, F.I., Abbasi, S.A.,. (1999). Assessment of risks posed by chemical industries - Application of a new computer automated tool MAXCRED-III. Journal of Loss Prevention in the Process Industries 12, 455–469. doi:https://doi.org/10.1016/S0950-4230(98)00064-3
Krauze, A.,. (2018). The application of CFD software in the explosive hazardous area classification . MATEC Web of Conferences 247. doi:https://doi.org/10.1051/MATECCONF/201824700053
Kurnia, J.C., Sasmito, A.P., Mujumdar, A.S.,. (2014). CFD simulation of methane dispersion and innovative methane management in underground mining faces. Applied Mathematical Modelling 38, 3467–3484. doi: https://doi.org/10.1016/J.APM.2013.11.067
Lauret, P. (2014). Modélisation de la dispersion atmosphérique sur un site industriel par combinaison d’automates cellulaires et de réseaux de neurons. Archive ouverte HAL.
Lin, S.C., Hou, Q.Z., Derlatka, A., Gao, S., Kang, J.J., Dong, X.L.,. (2022). The Study on the Shock Wave Propagation Rule of a Gas Explosion in a Gas Compartment . Shock and Vibration 2022. doi:https://doi.org/10.1155/2022/5938950
Lovreglio, R., Ronchi, E., Maragkos, G., Beji, T., Merci, B.,. (2016). A dynamic approach for the impact of a toxic gas dispersion hazard considering human behaviour and dispersion modelling. Journal of hazardous ma- terials 318, 758–771. doi:https://doi.org/10
Moussa, N.A., Devarakonda, V. v,. ( 2014). Prediction of Toxic Emissions from Chemical Fire and Explosion. Fire Safety Science Proceedings of the Eleventh International Symposium, 1457–1468. doi:https://doi.org/10.3801/IAFSS.FSS.11-1457
Munier, L. (2011). Simulations expérimentale et numérique des effets retardés d’une explosion en milieu clos et en présence de produits liquids. Physics. American Geophysical Union (AGU). doi:https://doi.org/10.1029/2001JB000884.
Neubauer, J. ( 2001). Invited Review: Physiological and pathophysiological responses to intermittent hypoxia. doi:https://doi.org/10.1152/jappl.2001.90.4.1593 90,1593–1599. https://doi.org/10.1152/JAPPL.2001.90.4.1593
Oran, E. W. (2012). The physics, chemistry and dynamics of explosions . Philosophical Transac- tions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 534–543. doi:https://doi.org/10.1098/RSTA.2011.
Gajšek, B., Draghici, A., Boatca, M. E., Gaureanu, A., Robescu, D. Linking the use of ergonomics methods to workplace social sustainability: The Ovako working posture assessment system and rapid entire body assessment method. Sustainability, 14(7), 4301, 2022.
Ivascu, L., Mocan, M., Draghici, A., Turi, A., Rus, S. Modeling the green supply chain in the context of sustainable development. Procedia Economics and Finance, 26, 702-708, 2015.
Dufour, C., Draghici, A., Ivascu, L., Sarfraz, M. Occupational health and safety division of responsibility: A conceptual model for the implementation of the OHSAS 18001: 2007 standard. Human Systems Management, 39(4), 549-563, 2020.
Refbacks
- There are currently no refbacks.