EXPERIMENTAL DETERMINATION OF DEPENDENCES BETWEEN SELECTED IMAGE CAPTURING SETUP PARAMETERS AND THE QUALITY OF THE REGULAR RELIEFS 3D TOPOGRAPHIES
Abstract
Determining the topography of the regular reliefs made using ball burnishing process is difficult using traditional approaches because most optical topography measurement systems are not designed for measurement of topography areas of such scale. The known contact methods also do not offer many advantages due to them measuring the topography profile in just one section. A hybrid optical and contact-based method which is better suited for such nontraditional topographies is studied. Some of image capturing parameters such as the topography illumination, how it filtered and levelled are not researched in deep yet. In the present work, these parameters are studied using a Taguchi experimental design and are subjected to verification by using a contact topography measurement method. Based on the obtained results from the experimental research, conclusions are made at the end of the work about the influence of the factors over the quality of regular micro reliefs images.
References
Ю. Шнейдер, “Эксплуатационные свойства деталей с регулярным микрорельефом,” Л. Машиностроение, vol. 248, p. 3, 1982.
S. D. Slavov, D. M. Dimitrov, and M. I. Konsulova-Bakalova, “Advances in burnishing technology,” in Advanced Machining and Finishing, Elsevier, 2021, pp. 481–525. doi: 10.1016/B978-0-12-817452-4.00002-6.
V. Dzyura, P. Maruschak, and O. Prentkovskis, “Determining Optimal Parameters of Regular Microrelief Formed on the End Surfaces of Rotary Bodies,” Algorithms, vol. 14, no. 2, p. 46, Jan. 2021, doi: 10.3390/a14020046.
G. Dessein, G. Dessein, and J. A. Travieso-Rodriguez, “Finishing Operations to Enhance Surface Integrity of Parts,” Finish. Oper. to Enhanc. Surf. Integr. Parts, p. 182, Nov. 2023, doi: 10.3390/BOOKS978-3-0365-9285-5.
S. Slavov, L. S. B. Van, D. Dimitrov, and B. Nikolov, “An Approach for 3D Modeling of the Regular Relief Surface Topography Formed by a Ball Burnishing Process Using 2D Images and Measured Profilograms,” Sensors 2023, Vol. 23, Page 5801, vol. 23, no. 13, p. 5801, Jun. 2023, doi: 10.3390/S23135801.
S. Van Der Jeught and J. J. J. Dirckx, “Real-time structured light profilometry: a review,” 2016, doi: 10.1016/j.optlaseng.2016.01.011.
Y. Hu, Q. Chen, S. Feng, and C. Zuo, “Microscopic fringe projection profilometry: A review,” Opt. Lasers Eng., vol. 135, p. 106192, 2020, doi: 10.1016/j.optlaseng.2020.106192.
Y. Wang, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” 2017, doi: 10.1016/j.optlaseng.2017.02.004.
A. D. Elliott, “Confocal Microscopy: Principles and Modern Practices,” Curr. Protoc. Cytom., vol. 92, no. 1, p. e68, Mar. 2020, doi: 10.1002/CPCY.68.
R. Kubota, W. Tanaka, and I. Hamachi, “Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies,” Chem. Rev., vol. 121, no. 22, pp. 14281–14347, Nov. 2021, doi: 10.1021/ACS.CHEMREV.0C01334/ASSET/IMAGES/MEDIUM/CR0C01334_0055.GIF.
X. Teng, F. Li, and C. Lu, “Visualization of materials using the confocal laser scanning microscopy technique,” Chem. Soc. Rev., vol. 49, no. 8, pp. 2408–2425, Apr. 2020, doi: 10.1039/C8CS00061A.
F. Hidayanti and A. A. Harnovan, “International Journal of Applied Science and Engineering Review APPLICATION OF SCANNING ELECTRON MICROSCOPY: A REVIEW,” 2020, Accessed: Mar. 04, 2024. [Online]. Available: http://ijaser.org
W. Li, Y. Yuan, J. Yang, and L. Yuan, “Review of Optical Fiber Sensor Network Technology Based on White Light Interferometry,” Photonic Sensors, vol. 11, no. 1, pp. 31–44, Mar. 2021, doi: 10.1007/S13320-021-0613-X/METRICS.
Z. Ren, F. Fang, N. Yan, and Y. Wu, “State of the Art in Defect Detection Based on Machine Vision,” Int. J. Precis. Eng. Manuf. Technol. 2021 92, vol. 9, no. 2, pp. 661–691, May 2021, doi: 10.1007/S40684-021-00343-6.
A. Jain and R. Gupta, “Gaussian filter threshold modulation for filtering flat and texture area of an image,” Conf. Proceeding - 2015 Int. Conf. Adv. Comput. Eng. Appl. ICACEA 2015, pp. 760–763, Jul. 2015, doi: 10.1109/ICACEA.2015.7164804.
T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, Jun. 2014, doi: 10.5194/GMD-7-1247-2014.
D. Eberly, “Least Squares Fitting of Data by Linear or Quadratic Structures,” Sep. 07, 2021. Available on: https://www.geometrictools.com/Documentation/LeastSquaresFitting.pdf (accessed Mar. 22, 2024).
J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” Springer Top. Signal Process., vol. 2, pp. 1–4, 2009, doi: 10.1007/978-3-642-00296-0_5/COVER.
N. C. Fei, N. M. Mehat, and S. Kamaruddin, “Practical Applications of Taguchi Method for Optimization of Processing Parameters for Plastic Injection Moulding: A Retrospective Review,” ISRN Ind. Eng., vol. 2013, pp. 1–11, Jun. 2013, doi: 10.1155/2013/462174.
S.D. Slavov and I.V. Iliev, “Design and FEM static analysis of an instrument for surface plastic deformation of non-planar functional surfaces of machine parts,” Fiability Durab., vol. 1, no. 2, pp. 3–9, [Online]. Available: https://doaj.org/article/5d09023126684e709cca46eb394d5573
S. Slavov, “An Algorithm for Generating Optimal Toolpaths for CNC Based Ball-Burnishing Process of Planar Surfaces,” in Advances in Intelligent Systems and Computing, vol. 680, 2018, pp. 365–375. doi: 10.1007/978-3-319-68324-9_40.
D. Nečas and P. Klapetek, “Gwyddion: An open-source software for SPM data analysis,” Cent. Eur. J. Phys., vol. 10, no. 1, pp. 181–188, Feb. 2012, doi: 10.2478/S11534-011-0096-2/MACHINEREADABLECITATION/RIS.
Refbacks
- There are currently no refbacks.