MODELING OF SURFACE FINISH IN SELECTIVE LASER MELTING OF 316L STAINLESS STEEL BY APPLYING STATISTICAL MULTI-PARAMETER ANALYSIS AND ARTIFICIAL NEURAL
Abstract
References
Tong Q., Xue K., Wang T., Yao S., Laser sintering and invalidating composite scan for improving tensile strength and accuracy of SLS parts, Journal of Manufacturing Processes, 2020, 56,1-11.
Dutt A. K., Bansal G. K., Tripathy S., Gopala Krishna K., Srivastava V. C., Ghosh Chowdhury, S., Optimization of Selective Laser Melting (SLM) Additive Manufa-cturing Process Parameters of 316L Austenitic Stainless Steel, Transactions of the Indian Institute of Metals, 2023, 76(2), 335-345.
Kostadinov G., Penyashki T., Nikolov A., Vencl, A., Improving the Surface Quality and Tribological Characteristics of 3D-Printed Titanium Parts through Reactive Electro-Spark Deposition, Materials, 2024, 17(2), 382.
Kozior, T., The influence of selected selective laser sintering technology process parameters on stress relaxation, mass of models, and their surface texture quality, 3D Printing and Additive Manufacturing, 2020, 7(3), 126-138.
Liu Y., Liu C., Liu W., et al., Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method, Optics & Laser Technology, 2019, 111, 470-480.
Sharma V., Singh S., To Study the Effect of SLS Parameters for Dimensional Accuracy, In Proc. Advances Mater. Process. Select Proc. ICFMMP 2019, Springer, Singapore, 2020, 165-173.
Manikandan S., Kumar A.S., Sharma C., Raja V.P., Adhiyamaan A., Investigation on the effect of fused deposition modeling process parameters on flexural and surface roughness properties of PC-ABS blend, International Journal on Recent Technologies in Mechanical and Electrical Engineering, 2015, 2(8), 41-47.
Dursun G., Ibekwe S., Li G., Mensah P., Joshi G., Jerro D., Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting, Materials Today: Proceedings, 2020, 26, 387-393.
Delgado J., Ciurana J., Rodríguez C.A., Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials, International Journal of Advanced Manufacturing Technology, 2012, 60 (5-8), 601-610.
El-Desouky A., Carter M., Mahmoudi M., Elwany A., LeBlanc S., Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder, Journal of Manufacturing Processes, 2017, 25, 411-417.
Bikas H., Stavropoulos P., Chryssolouris G., Additive manufacturing methods and modelling approaches: A critical review, International Journal of Advanced Manufacturing Technology, 2016, 83, 389-405.
Negi S., Dhiman S., Sharma R.K., Determining the effect of sintering conditions on mechanical properties of laser sintered glass filled polyamide parts using RSM, Measurement, 2015, 68, 205-218.
Negi S., Sharma R.K., Study on shrinkage behaviour of laser sintered PA 3200GF specimens using RSM and ANN, Rapid Prototyping Journal, 2016, 22, 645-659.
Sohrabpoor H., Negi S., Shaiesteh H., Ahad I., Brabazon D., Optimizing selective laser sintering process by grey relational analysis and soft computing techniques, Optik, 2018, 174, 185-194.
Sachdeva A., Singh S., Sharma V.S., Investigating surface roughness of parts produced by SLS process, International Journal of Advanced Manufacturing Technology, 2013, 64, 1505-1516.
Idriss A.I., Li J., Guo Y., Wang Y., Li X., Zhang Z., Elfaki E.A., Sintering quality and parameters optimization of sisal fiber/PES composite fabricated by selective laser sintering (SLS), Journal of Thermoplastic Composite Materials, 2022, 35, 1632-1646.
Paturi U.M.R., Vanga D.G., Duggem R.B., Kotkunde N., Reddy N.S., Dutta S., Estimation of surface roughness of direct metal laser sintered AlSi10Mg using artificial neural networks and response surface methodology, Materials and Manufacturing Processes, 2023, 38(14), 1798-1808.
Pereira T.F., Silva M.A.C., Oliveira, M.F., Maia I.A.,Silva J.V.L.,Costa M.F., Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering, Virtual and Physical Prototyping, 2012, 7(4), 275-285.
Boillat E., Kolossov S., Glardon R., Loher M., Saladin D., Levy G., Finite element and neural network models for process optimization in selective laser sintering, Proceedings of Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218(6), 607-614.
Li Z., Kucukkoc I., Zhang D.Z., Liu F., Optimising the process parameters of selective laser melting for the fabrication of Ti6Al4V alloy, Rapid Prototyping Journal, 2018, 24(1), 150-159.
Gadelmawla E.S., Koura M.M., Maksoud T.M., Elewa I. M., Soliman H. H., Rough-ness parameters, Journal of materials processing Technology, 2002, 123(1), 133-145.
Gherissi A., Elnasri I., Experimental and Numerical Study on Jet Abrasive Machining of Aluminum 2024-T3, Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering, 2019, 62(1).
Stănășel, I., Blaga, F.S., Stănășel, C., influence of the sequence of processing operations on the workpiece deformations, Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering, 2022, 65(3).
Vaxevanidis, N.M. Fountas, N.A. Ntziantzias, I. Koutsomichalis, A. Vencl, A., Experimental investigation and statistical analysis of surface roughness parameters in milling of PA66-GF30 glass-fibre reinforced polyamide, Tribological Journal BULTRIB, 2016, 6.
Vaxevanidis, N.M., Fountas, N.A., Kechagias, J.D., Manolakos, D., FEM Analysis and ANN Modeling for Optimizing Machinability Indicators during Dry Longitudinal Turning of Ti-6Al-4V ELI Alloy, In book: Metal Cutting Technologies: Progress and Current Trends, Ch.5, De Gruyter Oldenbourg, 2016, DOI: 10.1515/9783110451740-008.
Refbacks
- There are currently no refbacks.