MECHANISMS POSITIONED IN A NEIGHBOURHOOD OF THEIR SINGULAR POSITIONS VELOCITY AMPLIFICATION IN THE ELECTROMAGNETIC DAMPING. PART 1 – BACKGROUND OF THE MECHANICAL STRUCTURE MODELING

KRZYSZTOF LIPINSKI

Abstract


In the present paper, modelling methods are presented for a numerical model of a mechanical part of a hybrid (continuous/multibody) system. In the system, vibrations of a continuous mechanical part are present. To dampen them, their energy is transformed into the electrical current (by use of a DC generator) and dissipated. To amplify the damping, a double-bar mechanism is introduced between the vibrating part and the damping element. Two structurally different subsystems are considered. The elastic part is composed of finite elements. The mechanism is modelled as a multibody system. Constraint equations are used to joint the subsystems. The common final model effects in a numerical tool, useful when verification of electromagnetic damping is considered. Key words: electromagnetic damping; velocity amplification; singular position; multibody modelling; finite elements; constraint equations.

Full Text:

PDF

References


Soylu R., Cetin M., Linearization of Hybrid Robots and Input Torque Balancing of Mechanisms, Mech. Mach. Theory 33(5), pp. 611-624, Elsevier, ISSN: 0094-114X, 1998.

Arakelian V., Dahan M., Dynamic Balancing of Mechanism, Mechanics Research Communications 27(1), pp. 1-6, Pergamon-Elsevier Science Ltd, 2000.

Arghir M., Macovescu S. Truta A., Transmitted Vibrations to the head from the vibratory Environment, Acta Technica Napocensis, Series: Applied Mathemathics and Mechanics 52, vol III, pp. 17-20, ISSN 1221-5872, 2009.

Urs S., Arghir M., The Consequences of Hand – Arm Vibrations. The Raynaud Phenomenon, Acta Technica Napocensis, Series: Applied Mathemathics and Mechanics 52, vol III, pp. 75-80, ISSN 1221-5872, 2009.

Broel-Plater B., Domek S. Parus A., Permanent Magnet Chatter Absorber with Fuzzy Logic Control, Solid State Phenomena, Vol. 147-149, pp.290-295, ISSN: 1012-0394, 2009.

Hadas Z., Singule V., Ondrusek C., Optimal Design of Vibration Power Generator for Low Frequency, Solid State Phenomena, Vol. 147-149. pp.426-231, ISSN: 1012-0394, 2009.

Lipinski K., Studies on the electromagnetic damping – amplification based on a mechanism sets in a near to a singularity position, 6th International Conference Mechatronic System and Materials : MSM 2010, Opole, 5-8 July 2010 eds. K. Kluger, E. Macha, R. Pawliczek, Wydaw. Politech. Opolskiej, 2010. pp. 1-12, ISBN: 978-83-60691-78-6, 2010.

Fisette P., Samin J.C., Symbolic Modeling of Multibody System, Kluwer Acad. Pub., ISBN 978-1-4020-1629-8, 469 ps., 2003.

Fisette P., Lipinski K., Samin J.C., Symbolic Modelling for the Simulation, Control and Optimisation of Multibody Systems, Advances in Multibody Systems and Mechatronics, Kecskeméthy, A. Et al. (eds.) Institüt für Mechanik und Getriebelehre Technische Universität Gratz, pp. 139–174, ISBN: 395-0110-801, Gratz, (Austria), Septembre, 1999.

Haug E.J., Yen J., Generalized Coordinate Partitioning Methods for Numerical Integration of Differential-Algebraic Equations of Dynamics, NATO ASI Series 69, pp. 97–114, Springer-Verlag, ISBN: 3-540-53280-3, 1990.

Gawroński W., Kruszewski J., Ostachowicz W., Tarnowski J., Wittbrodt E., Metoda elementów skończonych w dynamice konstrukcji, Arkady,(in Polish), Warszawa, ISBN: 83-213-3159-9, 1984.

Kruszewski J., Wittbrodt E., Walczyk Z., Drgania układów mechanicznych w ujęciu komputerowym, Vol 2, WNT, (in Polish), Warszawa, ISBN: 83-204-1650-7, 1993.

Zienkiewicz, O.C., Taylor, R.L., The Finite Element Method, Vol. 1: The Basis, fifth ed., Butterworth-Heinemann, Oxford, 2000.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :