AUTONOMOUS MOBILE SYSTEMS FOR PLANTATION MAINTENANCE: REVIEW AND ANALYSIS

Mihai Dan ȘERDEAN, Florina Maria ȘERDEAN, Silviu-Dan MÂNDRU

Abstract


As demand for sustainable and efficient agriculture grows, autonomous mobile systems have become crucial for plantation maintenance. This paper reviews key commercial solutions, analyzing their capabilities and applications. It also examines locomotion models, highlighting their advantages and disadvantages in agricultural maintenance. Additionally, it summarizes the modular schematic framework for autonomous plantation maintenance systems, focusing on the task execution module, which automates essential operations. The analysis emphasizes sustainability and eco-friendly technologies that reduce environmental impact while improving efficiency and resource use.


Full Text:

PDF

References


Detesan, O.-A., Seeding the Future: A Journey Through the Evolution and Prospects of Agricultural Robotics, ACTA TECHNICA NAPOCENSIS - Series: APPLIED MATHEMATICS, MECHANICS, and ENGINEERING, Vol 67, Issue 2, 2024.

Șerdean, M., Șerdean, F., Mândru, D., An Overview of Grippers in Agriculture Robotic Systems, Springer, Berlin/Heidelberg, Germany, pp. 212–225, 2021.

Xu, R., Huang, B., Yin, H., A Review of the Large-Scale Application of Autonomous Mobility of Agricultural Platforms, Computers and Electronics in Agriculture, Vol. 206, 107628, ISSN 0168-1699, 2023, https://doi.org/10.1016/j.compag.2023.107628.

Fue, K.G., Porter, W.M., Barnes, E.M., Rains, G.C., An Extensive Review of Mobile Agricultural Robotics for Field Operations: Focus on Cotton Harvesting, AgriEngineering, Vol. 2, pp. 150-174, 2020, https://doi.org/10.3390/agriengineering2010010.

Andreasen, C., Streibig, J.C., Evaluation of Changes in Weed Flora in Arable Fields of Nordic Countries—Based on Danish Long-Term Surveys, Weed Research, Vol. 51, pp. 214–226, 2011, https://doi.org/10.1111/j.1365-3180.2010.00836.x.

European Commission, Sustainable Use of Pesticides – Farm to Fork Targets and Progress, 2025. Available at: https://ec.europa.eu/food/plants/pesticides/sustainable-use-pesticides/farm-fork-targets-progress_en (last accessed 04.01.2025).

Redbond, M., Robots – The Future of Agriculture, Special Feature – Application Technology, 2015. Available at: https://irtotrio.hu/wp-content/uploads/2020/11/IPC-Nov-Dec2015-final-lores.pdf.

Heap, I., The International Herbicide-Resistant Weed Database, 2025. Available at: www.weedscience.org (last accessed 04.01.2025).

Duke, S., Why Have No New Herbicide Modes of Action Appeared in Recent Years?, Pest Management Science, Vol. 68, pp. 505–512, 2011, https://doi.org/10.1002/ps.2333.

Rathika, S., Udhaya, A., Ramesh, T., Shanmugapriya, P., Weed Management Strategies in Green Gram: A Review, The Pharma Innovation Journal, Vol. 12, No. 3, pp. 5574-5580, 2023.

Schaefer, A., Plant Robot “Bonirob”, Available at: https://www.youtube.com/watch?v=utiNto4BeOg (last accessed 04.01.2025).

Press Release, 30 May 2018, Weeding Robots Startup ecoRobotix Raises CHF 10.6 Million, Available at: https://www.startupticker.ch/en/news/may-2018/ecorobotix-raises-chf-10-6-million-in-series-b-financing, (last accessed 04.01.2025).

ecoRobotix, Steve Tanner (Long Pitch) - EPFL Alumni SeedNight / Innovaud, Available at: https://www.youtube.com/watch?v=tiyLSOCwX5c, (last accessed 04.01.2025).

Shafiekhani, A., Kadam, S., Fritschi, F.B., DeSouza, G.N., Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field Phenotyping, Sensors, Vol. 17, pp. 214, 2017.

Tertill, https://tertill.com/, (last accessed 30.01.2025).

Farmdroid FD20 https://farmdroid.com/products/farmdroid-fd20/, (last accessed 30.01.2025).

Shaheb, M.R., Venkatesh, R., Shearer, S.A., A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production, Journal of Biosystems Engineering, Vol. 46, pp. 417–439, 2021, https://doi.org/10.1007/s42853-021-00117-7.

Tracked Tractor vs Wheeled Tractor. How to Reduce Soil Compaction?, TractorLab, Available at: https://www.youtube.com/watch?v=yTAWAsmyG_k.

Ansorge, D., Godwin, R.J., The Effect of Tyres and a Rubber Track at High Axle Loads on Soil Compaction, Part 1: Single Axle Studies, Biosystems Engineering, Vol. 98, No. 1, pp. 115-126, 2007, ISSN 1537-5110, https://doi.org/10.1016/j.biosystemseng.2007.06.005.

Shahgholi, G., Moinfar, A., Khoramifar, A., Maciej, S., Szymanek, M., Investigating the Effect of Tractor’s Tire Parameters on Soil Compaction Using Statistical and Adaptive Neuro-Fuzzy Inference System (ANFIS) Methods, Agriculture, Vol. 13, 259, 2023, https://doi.org/10.3390/agriculture13020259.

Tuschner, J., Tracks vs. Tires: How to Know Which Is Best for Your Farm Customer, Modern Tire Dealer, 12 Dec. 2018, Available at: https://www.moderntiredealer.com/industry-news/commercial-business/article/11529426/tracks-vs-tires-how-to-know-which-is-best-for-your-farm-customer-2018-12-12.

Gysi, M., Maeder, V., Weisskopf, P., Pressure Distribution Underneath Tires of Agricultural Vehicles, Transactions of the ASAE, Vol. 44, 2001, https://doi.org/10.13031/2013.7001.

Akhmetov, A., Akhmedov, S., Ishchanov, J., Investigating the Impact of Speed and Tire Pressure of a Wheel Tractor on Soil Properties: A Case Study in Northeastern Uzbekistan, AgriEngineering, Vol. 6, pp. 2067-2081, 2024, https://doi.org/10.3390/agriengineering6030121.

Rouhi-Kelarlou, T., Golchin, A., Soltani Toularoud, A.A., Ecotoxicological Impact of Butisanstar and Clopyralid Herbicides on Soil Microbial Respiration and the Enzymatic Activities, Chemosphere, Vol. 357, 142029, ISSN 0045-6535, 2024, https://doi.org/10.1016/j.chemosphere.2024.142029.

Kudsk, P., Streibig, J.C., Herbicides: A Two-Edged Sword, Weed Research, Vol. 43, pp. 90–102, 2003, https://doi.org/10.1046/j.1365-3180.2003.00328.x.

Harrison, J.L., Pesticide Drift and the Pursuit of Environmental Justice, MIT Press, Cambridge, 2011.

Cornish, C.M., Johnson, O.F., Bansal, S., Meier, J.A., Harris, T.D., Sweetman, J.N., Common Use Herbicides Increase Wetland Greenhouse Gas Emissions, Science of The Total Environment, Vol. 933, 172881, ISSN 0048-9697, 2024, https://doi.org/10.1016/j.scitotenv.2024.172881.

Jiang, W., Quan, L., Wei, G., Chang, C., Geng, T., A Conceptual Evaluation of a Weed Control Method with Post-Damage Application of Herbicides: A Composite Intelligent Intra-Row Weeding Robot, Soil and Tillage Research, Vol. 234, 105837, ISSN 0167-1987, 2023, https://doi.org/10.1016/j.still.2023.105837.

Bawden, O., Kulk, J., Russell, R., McCool, C., English, A., Dayoub, F., et al. Robot for weed species plant-specific management, J. Field Robotics, ISSN 0273-1177, Hoboken, NJ, 2017. doi: 10.1002/rob.21727

Averill, K.M., Westbrook, A.S., Pineda-Bermudez, L., O’Briant, R.P., DiTommaso, A., Ryan, M.R. Effects of Tertill® Weed-ing Robot on Weed Abundance and Diversity, Agronomy, ISSN 2073-4395, Basel, Switzerland, 2022. https://doi.org/10.3390/agronomy12081754

Tamburini, G., Simone, S.D., Sigura, M., Boscutti, F., Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control, J. Appl. Ecol., ISSN 0021-8901, Hoboken, NJ, 2016. doi: 10.1111/1365-2664.12544.

Sharma, D. K., Tomar, S., and Chakraborty, D., Role of earthworm in improving soil structure and functioning, Curr. Sci., ISSN 0011-3891, 113, 1064–1071, 2017, doi: 10.18520/cs/v113/i06/1064-1071.

Andreasen, C., Scholle, K., and Saberi, M., Laser Weeding With Small Autonomous Vehicles: Friends or Foes?, Front. Agron., ISBN 978-3-03842-239-2, 4:841086, 2022, doi: 10.3389/fagro.2022.841086.

Carbon Robotics, Laserweeder, http://www.carbonrobotics.com/laserweeder, (last accessed on 04.01.2025).

Heisel, T., Schou, J., Andreasen, C., and Christensen, S., Using laser to cut and measure thickness of Beta vulgaris L. and Solanum nigrum L. stems, Weed Res., ISSN 0043-1737, 42, 242–248, 2002. doi: 10.1046/j.0043-1737.2002.00282.x.

Heisel, T., Schou, J., Christensen, S., and Andreasen, C., Cutting weeds with CO2 laser, Weed Res., ISSN 0043-1737, 41, 19–29, 2001. doi: 10.1046/j.1365-3180.2001.00212.x.

Wang, A., Zhang, W., and Wei, X., A review on weed detection using ground-based machine vision and image processing techniques, Comput. Electron. Agric., ISSN 0168-1699, 158, 226–240, 2019. doi: 10.1016/j.compag.2019.02.005.

Rakhmatulin, I., Kamilaris, A., and Andreasen, C., Deep neural networks to detect and classify weeds from crops in agricultural environments in real-time: A review, Remote Sens., ISSN 2072-4292, 13:4486, 2021. doi: 10.3390/rs13214486.

Peruzzi, A., Raffaelli, M., Ginanni, M., Fontanelli, M., Frasconi, C., An innovative self-propelled machine for soil disinfection using steam and chemicals in an exothermic reaction, Biosyst. Eng., ISSN 1537-5110, 110(4), 434-442, 2011. doi: 10.1016/j.biosystemseng.2011.09.008.

Raffaelli, M., Martelloni, L., Frasconi, C., Fontanelli, M., Carlesi, S., Peruzzi, A., A prototype band-steaming machine: Design and field application, Biosyst. Eng., ISSN 1537-5110, 144, 61-71, 2016. doi: 10.1016/j.biosystemseng.2016.02.001.

Yang, Z., Wang, X., Ameen, M., Influence of the Spacing of Steam-Injecting Pipes on the Energy Consumption and Soil Temperature Field for Clay-Loam Disinfection, Energies, ISSN 1996-1073, 12, 3209, 2019. doi: 10.3390/en12173209.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :