3D PRINTING IN BIOMEDICAL ENGINEERING
Abstract
In this post, we will present a complete and up-to-date overview of 3D printing as well as its utilization in biomedicine. We show and discuss 3D printing technology, materials, cells, and their applications related to biomedical engineering. We provide our research and perspectives on the problems of 3D printing in biomedical engineering, as well as potential future advances. It is clear that 3D printing is becoming increasingly essential in biomedical engineering, with the potential to produce an extensive variety of high-value biomedical items.
This comprehensive study can assist in understanding the present state and identifying future prospects for 3D printing in biomedical engineering, and also advancing 3D printing toward the production of newer and better biomedical goods.
Full Text:
PDFReferences
Savu, I. D., Savu, S. V. and Sirbu, N. A., Hybrid heating in the fused filament fabrication process, Weld World. https://doi.org/10.1007/s40194-024-01851-0, (2024).
Pantelic, M., Pietila, T., Rollet, M., Myers, E., Song, T., O’Neill, W. W. and Wang, D. D., Using 3D-printed models to advance clinical care, Cardiovasc. Innovat. Appl. 4(1), 53–61 (2019).
Tarnita, D., Berceanu, C., Tarnita, C., The three-dimensional printing–a modern technology used for biomedical prototypes, Materiale plastice, no.47, nr.3, pp 328-334, 2010.
ten Kate, J., Smit, G. and Breedveld, P., 3D-printed upper limb prostheses: A review, Disabil. Rehabil.: Assist. Technol. 12(3), 300–314 (2017).
Tarnita, D., Tarnita, D.N., Popa D., Grecu, D., Niculescu, D., Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples, Romanian Journal of Morphology and embryology, Vol 51, No.1, pp 145-150, 2010,
Peng, W., Datta, P., Ayan, B., Ozbolat, V., Sosnoski, D. and Ozbolat, I. T., 3D bioprinting for drug discovery and development in pharmaceutics, Acta Biomater. 57, 26–46 (2017).
Rengier, F., Mehndiratta, A. Von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H.-U. and Giesel, F. L., 3D printing based on imaging data: Review of medical applications, Int. J. Comput. Ass. Rad. 5(4), 335–341 (2010).
Cursaru, L. M., Iota, M., Piticescu, R. M., Tarnita, D., Savu, S. V., Savu, I. D., Dumitrescu, G., Popescu, D., Hertzog, R. G. and Calin, M., Hydroxyapatite from natural sources for medical applications. Materials, 15(15), p.5091, (2022).
Jacobs, P. F., Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography (Society of Manufacturing Engineers, 1992).
Mott, E. J., Busso, M., Luo, X., Dolder, C., Wang, M. O., Fisher, J. P. and Dean, D., Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds, Mater. Sci. Eng. C 61, 301–311 (2016).
Wang, P., Berry, D. B., Song, Z., Kiratitanaporn, W., Schimelman, J., Moran, A., He, F., Xi, B., Cai, S., and Chen, S. 3D printing of a biocompatible double network elastomer with digital control of mechanical properties, Adv. Funct. Mater. 30(14), 1910391 (2020).
Dudman, J. P. R., Ferreira, A. M., Gentile, P., Wang, X., Ribeiro, R. D. C., Benning, M., and Dalgarno, K. W., Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation, Biofabrication 12(4), 045024 (2020).
Lan, Q., Zhu, Q., Xu, L., and Xu, T., Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions, World Neurosurg. 134, e761–e770 (2020).
Goyanes, A., Wang, J., Buanz, A., Martınez-Pacheco, R., Telford, R., Gaisford, S. and Basit, A. W., 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics, Mol. Pharm. 12(11), 4077–4084 (2015).
Russias, J., Saiz, E., Deville, S., Gryn, K., Liu, G., Nalla, R. K. and Tomsia, A. P., Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting, J. Biomed. Mater. Res. A 83A(2), 434–445 (2007).
Cesarano, J., A review of robocasting technology, MRS Proc. 542, 133 (1998).
Tappa, K. and Jammalamadaka, U., Novel biomaterials used in medical 3D printing techniques, J. Funct. Biomater. 9(1), 17 (2018).
Luong, D. X., Subramanian, A. K., Silva, G. A. L., Yoon, J., Cofer, S., Yang, K., Owuor, P. S., Wang, T., Wang, Z., Lou, J., Ajayan, P. M. and Tour, J. M., Laminated object manufacturing of 3D-printed laser-induced graphene foams, Adv. Mater. 30(28), 1707416 (2018).
Tan, K. H., Chua, C. K., Leong, K. F., Cheah, C. M., Cheang, P., Abu Bakar, M. S. and Cha, S. W., Scaffold development using selective laser sintering of Applied Physics Reviews, REVIEW scitation.org/journal/are Appl. Phys. Rev. 8, 021322 (2021).
Zhang, L. C. and Attar, H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review, Adv. Eng. Mater. 18(4), 463–475 (2016).
Sing, S. L. An, J., Yeong, W. Y. and Wiria, F. E., Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs, J. Orthop. Res. 34(3), 369–385 (2016).
Guo, N. and Leu, M. C., Additive manufacturing: Technology, applications and research needs, Front. Mech. Eng. 8(3), 215–243 (2013).
Brunello, G., Sivolella, S., Meneghello, R., Ferroni, L., Gardin, C., Piattelli, A., Zavan, B. and Bressan, E., Powder-based 3D printing for bone tissue engineering, Biotechnol. Adv. 34, 740–753 (2016).
Griffith, M., Keicher, D., Atwood, C., Romero, J., Smugeresky, J., Harwell, L. and Greene, D., Free form fabrication of metallic components using laser engineered net shaping (LENS), presented at the Solid Freeform Fabrication Proceedings, Austin, TX, USA, August 12–14, 1996.
Atwood, C., Griffith, M., Harwell, L., Schlienger, E., Ensz, M., Smugeresky, J., Romero, T., Greene, D. and Reckaway, D., Laser engineered net shaping (LENSTM): A tool for direct fabrication of metal parts, presented at the International Congress on Applications of Lasers & Electro-Optics, Orlando, FL, USA, November 16–19, 1998.
Bandyopadhyay, A., Krishna, B. V., Xue, W. and Bose, S., Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants, J. Mater. Sci. Mater. Med. 20(1), 29 (2009).
Bikas, H., Stavropoulos, P. and Chryssolouris, G., Additive manufacturing methods and modelling approaches: A critical review, Int. J. Adv. Manuf. Tech. 83(1–4), 389–405 (2016).
Zhai, Y., Lados, D. A., Brown, E. J. and Vigilante, G. N., Fatigue crack growth behavior and microstructural mechanisms in Ti-6Al-4V manufactured by laser engineered net shaping, Int. J. Fatigue 93, 51–63 (2016).
Chua, C. K. and Yeong, W. Y., Bioprinting: Principles and Applications (World Scientific Publishing, 2014).
Zhu, W., Qu, X., Zhu, J., Ma, X., Patel, S., Liu, J., Wang, P., Lai, C. S. E., Gou, M., Xu, Y., Zhang, K. and Chen, S., Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture, Biomaterials 124, 106–115 (2017).
Zhu, W., Cui, H., Boualam, B., Masood, F., Flynn, E., Rao, R. D., Zhang, Z. Y. and Zhang, L. G., 3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering, Nanotechnology 29(18), 185101 (2018).
Bedell, M. L., Navara, A. M., Du, Y., Zhang, S. and Mikos, A. G., Polymeric systems for bioprinting, Chem. Rev. 120(19), 10744–10792 (2020).
Lim, K. S., Galarraga, J. H., Cui, X., Lindberg, G. C., Burdick, J. A. and Woodfield, T. B., Fundamentals and applications of photo-cross-linking in bioprinting, Chem. Rev. 120(19), 10662–10694 (2020).
An, J., Chua, C. K. and Mironov, V., A perspective on 4D bioprinting, Int. J. Bioprinting 2(1), 3–5 (2016).
Kuang, X., Roach, D. J., Wu, J., Hamel, C. M., Ding, Z., Wang, T., Dunn, M. L. and Qi, H. J., Advances in 4D Printing: Materials and applications, Adv. Funct. Mater. 29(2), 1805290 (2019).
Refbacks
- There are currently no refbacks.