THERMAL STABILITY AND DEGRADATION BEHAVIOR OF BIO-BASED AND SYNTHETIC FIBER-REINFORCED COMPOSITES: A TGA STUDY

Sergiu LAZĂR, Ionela Magdalena ROTARU, Dan DOBROTĂ

Abstract


This study analysis the thermal stability and degradation behavior of six fiber-reinforced composites—carbon, glass, flax, banana, raffia, and seagrass—using thermogravimetric analysis (TGA). Carbon fiber showed the highest thermal stability (onset at 327°C, 13.26% residual mass), followed by glass fiber (291°C, 9.3%). From tested natural fibers composites, flax reached the best thermal performance (onset at 287°C, peak at 536°C), closely approaching glass fiber but still far from carbon fiber performance. While natural fibers show in general lower thermal resistance, flax is shown as a promising sustainable alternative with huge potential for thermal optimization in aerospace, automotive, and even construction applications.

Full Text:

PDF

References


Lazăr, S., Dobrotă, D., Breaz, R.-E., Racz, S.-G., Eco-Design of Polymer Matrix Composite Parts: A Review, Polymers, vol. 15, no. 17, Art. no. 17, Jan. 2023, doi: 10.3390/polym15173634.

Awais, H., Nawab, Y., Anjang, A., Akil, H. M., Abidin, M. S. Z., Mechanical Properties of Continuous Natural Fibres (Jute, Hemp, Flax) Reinforced Polypropylene Composites Modified with Hollow Glass Microspheres, Fibers Polym., vol. 21, no. 9, pp. 2076–2083, Sep. 2020, doi: 10.1007/s12221-020-2260-z.

Iliescu, N., Atanasiu, C., Hadǎr, A., The simulation of the mechanical behaviour of engineering structures on models made of plastic materials with special properties, Mat. Plast., 42(1), 2005, pp. 72-76, ISSN 0025 – 5289

Gonçalves, R. M., Martinho, A., Oliveira, J. P., Recycling of Reinforced Glass Fibers Waste: Current Status, Materials, vol. 15, no. 4, Feb. 2022, doi: 10.3390/MA15041596.

Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., Karim, N., Sustainable Fiber-Reinforced Composites: A Review, Adv. Sustain. Syst., vol. 6, no. 11, Nov. 2022, doi: 10.1002/adsu.202200258.

Asim, M. et al., Thermal stability of natural fibers and their polymer composites, Iran. Polym. J., vol. 29, no. 7, pp. 625–648, Jul. 2020, doi: 10.1007/s13726-020-00824-6.

Benítez-Guerrero, M., Pérez-Maqueda, L. A., Artiaga, R., Sánchez-Jiménez, P. E., Pascual-Cosp, J., Structural and Chemical Characteristics of Sisal Fiber and Its Components: Effect of Washing and Grinding, J. Nat. Fibers, vol. 14, no. 1, pp. 26–39, Jan. 2017, doi: 10.1080/15440478.2015.1137529.

Dobrotă, D., Lazăr, S. V., Redesign of the Geometry of Parts Produced from PBT Composite to Improve Their Operational Behavior, Polymers, vol. 13, no. 15, Art. no. 15, Jan. 2021, doi: 10.3390/polym13152536.

Dobrotă, D., Icociu, C. V., Lazăr, S., Racz, S.-G., Moraru, G.-M., Ecodesign Enhancement of Polymeric Resins: Reinforcing with Synthetic and Natural Fibers Using Theory of Inventive Problem Solving-Algorithm of Inventive Problem Solving for Sustainable Composite Design, Polymers, vol. 16, no. 24, Art. no. 24, Jan. 2024, doi: 10.3390/polym16243458.

Amza, Gh., Hadǎr, A., Apostolescu, Z., Gîrleanu, G., Anton, L., Experimental and theoretical researches regarding the acoustical parameters influence on the ultrasound welding of inteligent composite, Mat. Plast., 44(1), 2007, pp. 60-65.

Lai, T. S. M., Jayamani, E., Soon, K. H., Comparative study on thermogravimetric analysis of banana fibers treated with chemicals, Mater. Today Proc., vol. 78, pp. 458–461, Jan. 2023, doi: 10.1016/j.matpr.2022.10.267.

Nurazzi, N. M. et al., Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments, Polymers, vol. 13, no. 16, Art. no. 16, Jan. 2021, doi: 10.3390/polym13162710.

Monteiro, S. N., Calado, V., Rodriguez, R. J. S., Margem, F. M., Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview, Mater. Sci. Eng. A, vol. 557, pp. 17–28, Nov. 2012, doi: 10.1016/j.msea.2012.05.109.

Tabacu, S., Hadar, A., Marinescu, D., Marin, D., Dinu, G., Ionescu, D. S., Structural Performances of Thermoplastic Manufactured Parts, Mater. Plast., 2008.

Sai Revanth, J. , Sai Madhav, V., Kalyan Sai, Y., Vineeth Krishna, D., Srividya, K., Mohan Sumanth, C. H., TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides, jute and glass fiber, Mater. Today Proc., vol. 26, pp. 460–465, Jan. 2020, doi: 10.1016/j.matpr.2019.12.082.

Investigation of carbon fiber–reinforced thermoplastic polymers using thermogravimetric analysis - Maciej Giżyński, Barbara Romelczyk-Baishya, 2021.” Accessed: Feb. 17, 2025. [Online]. Available: https://15105xvua-y-https-journals-sagepub-com.z.e-nformation.ro/doi/full/10.1177/0892705719839450

Neto, J. et al., A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites, doi: 10.32604/jrm.2022.017434.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :