NUMERICAL APPROACH FOR ANALYZING 3D-PRINTED FINRAY SOFT GRIPPERS WITH ARTICULATED CROSS BEAMS

Radu Vlad PESCARU, Tudor George ALEXANDRU, Dragoș ROTARU, Diana POPESCU

Abstract


Soft robotic grippers inspired by the Fin Ray Effect have gained attention due to their ability to gently interact with objects. This study presents the design and 2D numerical analysis of a three-jaw 3D-printed soft gripper that includes articulated cross-beams. Opposed to existing simulation methodologies, the work focuses on computational efficiency and result accuracy by employing simplifying assumptions. The assembly was fabricated by using ABS via material extrusion. Validation against experimental data proved angular deformation deviations below 5%, confirming the accuracy of the simulation model. The gripper effectively adapts to the geometry of the objects while maintaining structural resilience. These findings highlight the efficiency and accuracy of the numerical approach, supporting rapid design iterations.


Full Text:

PDF

References


Tracht, K., Hogreve, S., Bosse, S., Interpretation of multiaxial gripper force sensors, Technologies and Systems for As-sembly Quality, Productivity and Customization - Proceedings of the 4th CIRP Conference on Assembly Technologies and Systems (CATS 2012), Ann Arbor, Michigan, USA

Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., Lien, T.K., Seliger, G., Reinhart, G.,Franke, J., Hansen, H.N., Verl, A.,2014, Grasping devices and methods in automated production processes, CIRP Annals - Manufacturing Technology, Volume 63, Issue 2, pp. 679-701, ISSN 0007-8506, http://dx.doi.org/10.1016/j.cirp.2014.05.006, 2014

Hernandez J, Sunny MSH, Sanjuan J, Rulik I, Zarif MII, Ahamed SI, Ahmed HU, Rahman MH. Current Designs of Robotic Arm Grippers: A Comprehensive Systematic Review. Robotics. 12(1):5. https://doi.org/10.3390/robotics12010005, 2023

Wang, Z., Hirai, S., & Kawamura, S., Challenges and Opportunities in Robotic Food Handling: A review, Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.789107, 2022

AboZaid, Y. A., Aboelrayat, M. T., Fahim, I. S., & Radwan, A. G., Soft robotic grippers: A review on technologies, materials, and applications. Sensors and Actuators a Physical, 372, 115380. https://doi.org/10.1016/j.sna.2024.115380, 2024

Dzedzickis A, Petronienė JJ, Petkevičius S, Bučinskas V. Soft Grippers in Robotics: Progress of Last 10 Years, Machines. 12(12):887, 2024 https://doi.org/10.3390/machines12120887

Kashef Tabrizian, S., Terryn, S., Brauchle, D., Reinke Seyler, J., Brancart, J., Van Assche, G., & Vanderborght, B., Variable Stiffness, Sensing, and Healing in FESTO's FinRay Gripper: An Industry-Driven Design, IEEE Robotics & Automation Magazine, 2 – 13, 2024 https://doi.org/10.1109/MRA.2024.3358723

Müller, A., Aydemir, M., Glodde, A., & Dietrich, F., Design approach for Heavy-Duty Soft-Robotic-Gripper, Procedia CIRP, 91, 301–305, 2020 https://doi.org/10.1016/j.procir.2020.02.180

Deng, Z., & Li, M., Learning optimal Fin-Ray Finger design for soft grasping, Frontiers in Robotics and AI, 7. https://doi.org/10.3389/frobt.2020.590076, 2021

De Barrie, D., Pandya, M., Pandya, H., Hanheide, M., & Elgeneidy, K., A deep learning method for vision based force prediction of a soft finray gripper using simulation data, Frontiers in Robotics and AI, 8., 2021 https://doi.org/10.3389/frobt.2021.631371

Srinivas, G. L., Javed, A., & Faller, L. M. Versatile 3D-printed fin-ray effect soft robotic fingers: lightweight optimization and performance analysis, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(6), 2024 https://doi.org/10.1007/s40430-024-04957-0

Kitamura, T., Matsushita, K., & Nakatani, N., Analysis of contact force and shape change on grasping a square object using an actual Fin Ray soft gripper, Sensors, 23(24), 9827.https://doi.org/10.3390/s23249827, 2023

Chen, R., Song, R., Zhang, Z., Bai, L., Liu, F., Jiang, P., Sindersberger, D., Monkman, G. J., & Guo, J., 2019, Bio-Inspired Shape-Adaptive Soft Robotic Grippers Augmented with Electroadhesion Functionality, Soft Robotics, 6(6), pp. 701–712. https://doi.org/10.1089/soro.2018.0120, 2019

Yao, J., Fang, Y., & Li, L., Research on effects of different internal structures on the grasping performance of Fin Ray soft grippers, Robotica, 41(6), 1762–1777. https://doi.org/10.1017/s02635747230001392023

Emerson, J., Elgeneidy, K., Optimising Soft Fin Ray Robotic Fingers using Finite Element Analysis to Reduce Object Slippage, UKRAS20 Conference: “Robots into the real world” Proceedings, pp. 43-45, 2020

Shan, X., Birglen, L., Modeling and analysis of soft robotic fingers using the fin ray effect, The International Journal of Robotics Research, 39(14), pp. 1686–1705. https://doi.org/10.1177/0278364920913926, 2020

Crooks, W., Vukasin, G., O’Sullivan, M., Messner, W., & Rogers, C., Fin Ray® Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge toward Optimization. Frontiers in Robotics and AI, https://doi.org/10.3389/frobt.2016.00070, 2016

Bean, P.; Lopez-Anido, R.A.; Vel, S., Numerical modeling and experimental investigation of effective elastic properties of the 3D-printed gyroid infill, Appl. Sci., 12, 2180, 2022

Yang Y, Jin K, Zhu H, Song G, Lu H, Kang L., A 3D-Printed Fin Ray Effect Inspired Soft Robotic Gripper with Force Feedback. Micromachines, 12(10):1141. https://doi.org/10.3390/mi12101141, 2021

Popescu, D., Baciu, F., Amza, C. G., Cotrut, C. M., Marinescu, R., 2021, The Effect of Disinfectants Absorption and Medical Decontamination on the Mechanical Performance of 3D-Printed ABS Parts, Polymers, 13(23), 4249. https://doi.org/10.3390/polym13234249

Online materials information resource - MatWeb. (n.d.). https://www.matweb.com/ (accessed 16.12.2024)

Online product help manual - https://ansyshelp.ansys.com/en/ans_elem/Hlp_E_MPC184revo (accessed 13.02.2025)

Online product help manual - https://ansyshelp.ansys.com/en/ans_elem/Hlp_E_COMBIN14 (accessed 13.02.2025)

Mhenni F, Choley JY, Nguyen N., SysML safety profile for mechatronics, 2014 10th France-Japan/8th Europe-Asia Congress on Mecatronics (MECATRONICS2014-Tokyo), pp. 29-34. IEEE. https://doi.org/10.1109/mecatronics.2014.7018622, 2014


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :