APPLICATION OF FUZZ TESTING FOR FUNCTIONAL VALIDATION IN AUTOMOTIVE
Abstract
Full Text:
PDFReferences
SAE, J3061 - Cybersecurity Guidebook for Cyber-Physical Vehicle Systems, SAE Int. J. Connect. Autom. Veh. (2016). https://www.sae.org/standards/content/j3061_201601/. 2016
ISO, ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering, ISO/TC 22/SC 32 Electr. Electron. Components Gen. Syst. Asp. (2021).
UN-ECE, R155 - Cyber security and cyber security management system, Off. J. Eur. Union Eur. Union. (2021). https://doi.org/ISSN 1977-0642. 2021
Zalewski, M, American fuzzy lop, (n.d.). https://lcamtuf.coredump.cx/afl/. accessed in 2025
Bhavani, R, What Is Fuzz Testing, And How Does It Work?, (n.d.). https://www.qatouch.com/blog/fuzz-testing/. accessed in 2025
Anistoroaei, A., Groza, B., Murvay, P.-S., Gurban, H. Security Analysis of Vehicle Instrument Clusters by Automatic Fuzzing and Image Acquisition, in: Proc. 2022 IEEE Int. Conf. Autom. Qual. TESTING, Robot. (AQTR 2022), IEEE,
E 47TH ST, NEW YORK, NY 10017 USA, 2022: pp. 13–18. https://doi.org/10.1109/AQTR55203.2022.9802024. 2022
Golam, G., Kayas, Z., Pelletier; D., AI-assisted Vulnerability Analysis And Classification Framework for UDS on CAN-bus Fuzzer, in: 10th escar USA - The World’s Leading Automotive Cyber Security Conference, 2023
Fowler, D.S., Bryans, J., Cheah, M., Wooderson, P., Shaikh, S.A., A Method for Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example, in: 2019 COMPANION 19TH IEEE Int. Conf. Softw. Qual. Reliab. Secur. (QRS-C 2019), IEEE COMPUTER SOC, 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA, 2019:
Vikram, V., Laybourn, I., Li, A., Nair, N., Brien, K.O., Sanna, R., Padhye, R. Guiding Greybox Fuzzing with Mutation Testing, Proc. 32ND ACM SIGSOFT Int. Symp. Softw. Test. Anal. ISSTA 2023. 929–941. (2023)
Lee, J., Viganò, E., Cornejo, O., Pastore, F., Briand, L. IEEE, Fuzzing for CPS Mutation Testing, 2023 38TH IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE. 1377–1389. (2023)
Kim, H., Jeong, Y., Choi, W., Lee, D.H., Jo, H.J. Efficient ECU Analysis Technology Through Structure-Aware CAN Fuzzing, IEEE Access. 10 (2022).
Moukahal, L.J., Zulkernine, M., Soukup, I.C.. Soc, Boosting Grey-box Fuzzing for Connected Autonomous Vehicle Systems, 2021 21ST Int. Conf. Softw. Qual. Reliab. Secur. COMPANION (QRS-C 2021). 516–527. (2021)
Moukahal, L.J., Zulkernine, M., Soukup, I.C. Vulnerability-Oriented Fuzz Testing for Connected Autonomous Vehicle Systems, IEEE Trans. Reliab. (2021).
Celik, L., McShane, J., Scott, C., Aideyan, I., Brooks, R., Pesé, M., Comparing Open-Source UDS Implementations Through Fuzz Testing, 2024. https://doi.org/10.4271/2024-01-2799.
Vinnova, Caring Caribou, (n.d.). https://github.com/CaringCaribou/caringcaribou. accessed in 2025
Blackduck, Defensics Fuzz Testing Tool, (n.d.). https://www.blackduck.com/fuzz-testing.html. accessed in 2025
Yeo, A.K.T. Garbelini, M.E., . Chattopadhyay, S., Zhou, J. VITROBENCH: Manipulating in-vehicle networks and COTS ECUs on your bench A comprehensive test platform for automotive cybersecurity research, Veh. Commun. 43 (2023).
Li, Z., Jiang, W., Liu, X., Tan, K., Jin, X., Yang M., GAN model using field fuzz mutation for in-vehicle CAN bus intrusion detection, Math. Biosci. Eng. 19 6996–7018. https://doi.org/10.3934/mbe.2022330. 2022
D. Kengo Oka, Building Secure Cars,. https://doi.org/10.1002/9781119710783. 2021
ISTQB, International Software Testing Qualification Board, (2002). https://www.istqb.org. - accessed in 2025
AUTOSAR, Specification of CAN Network Management R23-11, AUTOSAR. (n.d.) 103. https://www.autosar.org/fileadmin/standards/R23-11/CP/AUTOSAR_CP_SWS_CANNetworkManagement.pdf. accessed in 2025
Kifor, C., Popescu, A. Automotive Cybersecurity: A Survey on Frameworks, Standards, and Testing and Monitoring Technologies, Sensors. 24. https://doi.org/10.3390/s24186139. (2024)
Refbacks
- There are currently no refbacks.

