Mihai CIUPAN, Marcel POPA


Abstract: The paper presents the mechanical properties of materials which are already used or could be used in building structural elements of machine tools. The materials presented are metals, natural stone, ceramics, metal foams, fiber reinforced polymers, polymer concrete (mineral casting) and hybrid structures. The most common characteristics of structural elements are detailed and categorized. A methodology for choosing the optimum material is detailed at the end of the paper and a performance metric shows graphically why mineral casting is better suited for milling machines and lathes than cast iron with lamellar graphite.

Key words: machine-tool, structural elements, mechanical properties, materials, comparison, mineral casting.

Full Text:



Aggogeri, F., Borboni, A., Merlo, A., Pellegrini, N., & Ricatto, R. (2017). Vibration Damping Analysis of Lightweight Structures in Machine Tools. Materials, 10, 297.

Ashby, M. F. (2000). Multi-Objective Optimization in Material Design and Selection. Acta Materalia, 48, 359–369.

ASTM International. (2005). E 756 – 05: Standard Test Method for Measuring Vibration-Damping Properties of Materials. ASTM International.

Brecher, C., Utsch, P., Klar, R., & Wenzel, C. (2010). Compact design for high precision machine-tools. International Journal of MachineTools & Manufacture, 50(328–334).

Bruni, C., Forcellese, A., Gabrielli, F. &

Simoncini, M. (2008). Hard turning of an alloy steel on a machine tool with a polymer concrete bed. Journal of Materials Processing Technology, 202, 493-499.

Cai, C., & Sun, Q. (2010). Measurement and Evaluation of Damping Properties of Damping Material (pp. 231–216). Presented at the IMEKO TC3, TC5 and TC22, Pattaya, Chonburi, Thailand.

Cambridge University Engineering Department. (2003). Materials Data Book. Cambridge University.

Chang, S. H., Kim, P. J., Lee, D. G., & Choi, J. K. (2001). Steel Composite Hybrid Headstock for High-precision Grinding Machines. Composite Structures, 53, 1–8.

Ciupan, M. (2016). Proiectarea unor componente structurale din material compozit pentru un centru de prelucrare CNC, Universitatea Tehnică din Cluj-Napoca (Lucrare de disertație).

Dahil, L., Karabulut, A., & Baspinar, S. (2013). Damping Properties of Open Pore Aluminum Foams Produced by Vacuum Casting and Nacl Dissolution Process. Metalurgija, 52(4), 489–492.

Department Of Defense. (2002). Composite Materials Handbook (Vol. 3. Polymer Matrix Composites Materials Usage, Design, And Analysis). Department Of Defense.

Dobrzanski, L. A. (2006). Significance of materials science for the future development of societies. Journal of Materials Processing Technology, 175, 133–148.

Erbe, T., Krol, J., & Theska, R. (n.d.). Mineral Casting As Material For Machine Base-Frames Of Precision Machines.

Furukawa, Y., Moronuki, N., & Kitagawa, K. (1986). Development of Ultra Precision Machine Tool Made of Ceramics. CIRP, 35(1), 279–282.

Graesser, E. J., & Wong, C. R. (1991). The Relationship of Traditional Damping Measures for Materials with High Damping Capacity. David Taylor Research Center.

Graham Kelly, S. (2000). Fundamentals of Mechanical Vibrations (2nd ed.). McGraw Hill.

Haddad, H., & Al Kobaisi, M. (2012). Optimization of the polymer concrete used for manufacturing bases for precision tool machines. Composites: Part B, 43, 3061–3068.

Harib, K. H., Sharif Ullah, A. M. M., & Moustafa, K. A. F. (2013). Optimal design for improved hybrid kinematic machine tools. In Procedia CIRP (Vol. 12, pp. 109 – 114). Elsevier B.V.

Huo, D., & Cheng, K. (2008). A dynamics-driven approach to the design of precision machine tools for micro-manufacturing and its implementation perspectives. In Proc. IMechE (Vol. 222).

Huo, D., Cheng, K., & Wardle, F. (2010). Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: holistic design approach, design considerations and specifications. Int J Adv Manuf Technol, (47), 867–877.

Irvine, T. (2005). The Half Power Bandwidth Method For Damping Calculation.

Jackisch, U.-V. (2002). Mineralguss fuer den Maschinenbau, Die Bibliothek der Technik 231, Verlag Moderne Industrie. ISBN 3-478-93273-4.

Jaglinski, T., Kochmann, D., Stone, D., & Lake, R. S. (2007). Composite Materials with Viscoelastic Stiffness Greater Than Diamond. Science, 315, 620.

Kepczak, N., & Pawlowski, W. (2013). Application of Mineral Casting for Machine Tools Beds. Mechanics and Mechanical Engineering, 17(4), 285–289.

Kepczak, N., Pawlowski, W., & Blazejewski, W. (2014). The Study of the Mechanical Properties of the Mineral Cast Material. Archives of Mechanical Technology and Automation, 34(2), 25–32.

Lee, D. G., Suh, J. D., Kim, H. S., & Kim, J. M. (2004). Design and manufacture of composite high speed machine tool structures. Composites Science and Technology, 64, 1523–1530.

Macioce, P. (n.d.). Viscoelastic Damping 101. Roush Industries Inc.

McDaniel, G., & Knight, C. (2014). Fiber Reinforced Polymer (FRP) Composites. Presented at the Design Training Expo.

Mechanical properties of gray cast iron. (n.d.). Siempelkamp Giesserei.

Merlo, A., Ricciardi, D., Cremona, A., Meo, F., & Aggogeri, F. (n.d.). Advanced composite materials in precision machine tools sector – Applications and perspectives.

Moehring, H. C. (2017). Composites in production machines. In Procedia CIRP (Vol. 66, pp. 2–9). Elsevier B.V. 10.1016/j.procir.2017.04.013

Moehring, H.-C., Brecher, C., Abele, E., Fleischer, J. & Bleicher, F. (2015). Materials in machine tool structures. CIRP Annals - Manufacturing Technology, 64 (2), 725–748.

Neugebauer R, Drossel W-G, Ihlenfeldt S, Nestmann S, Richter C. (2012). Inherent Thermal Error Compensation of Machine Tool Structures with Graded Mineral Casting, MATAR2012-12053, MM Science Journal. 9th International Conference on Machine Tools, Automation, Technology and Robotics, 12–14 September, 2012, Prague, Czech Republic.

Pan, Q., & Cho, C. (2008). Damping Property Of Shape Memory Alloys. Presented At The Metal 2008.

Parkinson, Armson, Cooknell, Dixon, Martin, & Morgan. (1990). Damped Natural Vibration. Open University.

Perras, M. A., & Diedrichs, M. S. (2014). A Review of the Tensile Strength of Rock: Concepts and Testing. Geotech Geol Eng.

Piratelli-Filho, A., & Flamínio, L.-N. (2010). Behavior of Granite-Epoxy Composite Beams Subjected to Mechanical Vibrations. Materials Research, 13(4), 497–503.

Radzikowska, J. M. (n.d.). Metallography and Microstructures of Cast Iron. In ASM Handbook (Vol. 9: Metallography and Microstructures, pp. 565–587). Materials Park, Ohio, USA: ASM International.

Ritchie, I. G., & Pan, Z.-L. (1991). High-Damping Metals and Alloys. Metallurgical Transactions, 22A, 607–616.

Sbowe, R. L. (1969). Strength And Deformation Properties Of Granite, Basalt, Limestone And Tuff At Various Loading Rates.

Schneider, M. (2012). Das intelligente Mineralgussbett—Ein Beitrag zur Reduzierung von thermisch bedingten Fehlern an Werkzeugmaschinen, Maschinengestelle heute—Werkstoffe Konzepte Innovationen. Proceedings Wangener Maschinen Tage, 09–10 May 2012, Wangen, Germany, 65–77.

SOLIDWORKS Material Properties in Simulation. (n.d.). GoEngineer.

Suh, J. D., & Lee, D. G. (2008). Design and manufacture of hybrid polymer concrete bed for high-speed CNC milling machine. Int J Mech Mater Des, (4), 113–121.

Watanabe, Y., Suga, Y., Sato, H., Tsukamoto, H., & Nishino, Y. (2013). Damping Capacity of Fe17mass%Mn High Damping Alloy with Variant Controlled Microstructure. Materials Transactions, 54(8), 1288–1294.

Zhang, J., Perez, R. J., & Lavernia, E. J. (1993). Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. Journal Of Materials Science, 28, 2395–2404.


  • There are currently no refbacks.