ENCODINGS FOR THE CALCULATION OF THE PERMUTATION HYPOENTROPY AND THEIR APPLICATIONS ON FULL-SCALE COMPARTMENT FIRE DATA

Flavia Corina MITROI-SYMEONIDIS, Ion ANGHEL, Shigeru FURUICHI

Abstract


Based on the data collected during a full-scale experiment, the order/disorder characteristics of a compartment fire are researched. We discuss methods, algorithms and the novelty of our entropic approach. From our analysis, we claim that the permutation type hypoentropies can be successfully used to detect unusual data and to perform relevant analysis of fire experiments.

Full Text:

PDF

References


Bandt, C., Pompe, B., Permutation entropy: a natural complexity measure for time series. Physical review letters, 88(17), 174102 (2002).

Cao, T., Tung, W. W., Gao, J. B., Protopopescu, V. A., Hively, L. M., Detecting dynamical changes in time series using the permutation entropy. Physical review E, 70(4), 046217 (2004).

Crooks, G. E., Inequalities between the Jenson-Shannon and Jeffreys divergences. Tech. Note 004 (2008).

Duan, S., Wang, F., Zhang, Y., Research on the biophoton emission of wheat kernels based on permutation entropy. Optik, 178, 723-730 (2019).

Ferreri, C., Hypoentropy and related heterogeneity, divergence and information measures. Statistica, 2, 155-167(1980).

Furuichi, S., Mitroi-Symeonidis, F. -C., Symeonidis, E., On some properties of Tsallis hypoentropies and hypodivergences. Entropy, 16(10), 5377-5399 (2014).

Graham, T. L., Makhviladze, G. M., Roberts, J. P., On the theory of flashover development. Fire Safety Journal, 25(3), 229-259 (1995).

Jeffreys, H., An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. Lon. Ser. A 186, 453-461 (1946).

Kullback, S., Leibler, L. A., On information and sufficiency. Ann. Math. Statistics, 22, 1, 79-86 (1951).

Lamberti, P. W., Martin, M. T., Plastino, A., & Rosso, O. A., Intensive entropic non-triviality measure. Physica A: Statistical Mechanics and its Applications, 334 (1-2), 119-131 (2004).

Lin, J., Divergence measures based on the Shannon entropy. IEEE. IEEE - Transactions on Information Theory 37, 145-151 (1991).

López-Ruiz, R., Mancini, H. L., Calbet, X. A statistical measure of complexity. Physics Letters A, 209 (5-6), 321-326 (1995).

Mitroi-Symeonidis, F. -C., Anghel, I. The PYR-algorithm for time series modeling of temperature values and its applications on full-scale compartment fire data. Submitted 2019.

Mitroi-Symeonidis, F. -C., Anghel, I., Minculete, N., Parametric Jensen-Shannon statistical complexity and its applications on full-scale compartment fire data. Submitted 2019.

Mitroi-Symeonidis, F. -C., Anghel, I., Lalu, O., Popa, C., The permutation entropy and its applications on fire tests data. Submitted 2019. Available online at: https://arxiv.org/abs/1908.04274.

Murayama, S., Kaku, K., Funatsu, M., Gotoda, H., Characterization of dynamic behavior of combustion noise and detection of blowout in a laboratory-scale gas-turbine model combustor. Proceedings of the Combustion Institute, 37(4), 5271-5278 (2019).

Rao, C. R., Nayak, T. K. (1985). Cross entropy, dissimilarity measures, and characterizations of quadratic entropy. IEEE Trans. Inform. Theory, vol. IT-31. no. 5, 589-593.

Ribeiro, H. V., Zunino, L., Lenzi, E. K., Santoro, P. A., Mendes, R. S., Complexity-entropy causality plane as a complexity measure for two-dimensional patterns. PloS one, 7(8), e40689 (2012).

Shannon, C. E., A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423 (1948).

Takagi, K., Gotoda, H., Tokuda, I. T., Miyano, T. Dynamic behavior of temperature field in a buoyancy-driven turbulent fire. Physics Letters A, 382(44), 3181-3186 (2018).

Watt, S. J., Politi, A., Permutation entropy revisited. Chaos, Solitons & Fractals, 120, 95-99 (2019).

Zunino, L., Soriano, M. C., Rosso, O. A., Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Physical Review E, 86(4), 046210 (2012).


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :