A ROBOTIC-ASSISTED SPUTUM COLLECTION BOOTH
Abstract
Full Text:
PDFReferences
Melgar, M., Nichols, C., Cavanaugh, S., Kirking, H.L., Surie, D., Date, A., Ahmedov, S., Maloney, S., Fukunaga, F. Tuberculosis Preventive Treatment Scale-Up Among Antiretroviral Therapy Patients — 16 Countries Supported by the U.S. President’s Emergency Plan for AIDS Relief, 2017–2019. MMWR Morb Mortal Wkly Rep. 69(12), pp. 329–334, 2020.
Cole, B., Nilsen, D., Will, L., Etkind, S., Burgos, M., Chorba, T. Essential Components of a Public Health Tuberculosis Prevention, Control, and Elimination Program: Recommendations of the Advisory Council for the Elimination of Tuberculosis and the National Tuberculosis Controllers Association. MMWR Recomm Rep. 69(7), pp. 1–27, 2020
Mok, D., Chowdhury, S., Nabulsi, R., Eloyan, N., Jurs, M., Rocio Gonzlez Guerrero, M. Implementation of Class II biological safety cabinet good maintenance practice: protective countermeasures against SARS-CoV-2 for ISO 15189:2012 accredited medical laboratories. New Zealand Journal of Medical Laboratory Science, 75(1), pp. 26-32, 2021.
DAI-DAN Co.,Ltd., https://www.daidan.co.jp/english/technology/saitan/index.html, September 2021.
Nippon Medical & Chemical Instruments Co., Ltd., https://www.nihonika.co.jp/en/t/e_vcm-1500n2.htm, September 2021.
Esco Technologies Inc., https://www.escopharma.com/products/esco-sputum-booth/10, September 2021.
Gherman, B., Caprariu, A., Puskas, F., Pisla, A., Antal, T., Pisla, D. Evaluation and selection of a collaborative robot for a tuberculosis sample collection isolated booth. 25th International Conference on System Theory, Control and Computing, IHAW2021, Accepted for publication, 2021.
Wittel., H., Muhs., D., Jannasch., D., Voßiek , J. Roloff / Matek machine elements - Standardization, calculation, design, 21st ed., Spinger Fachmedien Wiesbaden, 2013.
Lotter, B., Wiendahl, H.-P., Montage in Der Industriellen Produktion, Spinger Berlin Heidelberg, 2012.
Bertolini, B., Mezzogori, D., Neroni, M., Zammori, F. Machine Learning for industrial applications: A comprehensive literature review. Expert Systems with Applications, 175, 114820, 2021.
Wang, J., Ma, Y., Zhang, L., Gao, R., Dazhong, W. Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48(C), 144-156, 2018.
Shrivakshan, G.T., Chandrasker, C., A comparison of various Edge Detection Techniques used in Image Processing, International Journal of Computer Science Issues, 9(15), 2012.
Shorten, C., Khoshgoftaar, T. A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6, 60, 2019.
Liznerski, P., Ruff, L., Vandermeulen, R., Franks, B.J., Kloft, M., Müller, K.R. Explainable Deep One-Class Classification. Computer Vision and Pattern Recognition, 2021.
Karen, S., Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Vision and Pattern Recognition, 2021
Vaida, C., Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Stancel, E., Hesselbach, J., Raatz, A., Vlad, L., Graur, F. Development of a control system for a parallel robot used in minimally invasive surgery, IFMBE Proceedings, 26, pp. 171-176, 2009.
Vaida, C., Birlescu, I., Pisla, A., Ulinici, I., Tarnita, D., Carbone, G., Pisla, D. Systematic design of a parallel robotic system for lower limb rehabilitation, IEEE Access, 8, pp. 34522-34537, 2020.
Refbacks
- There are currently no refbacks.