DIAGNOSIS OF BEARING FAULTS IN A CENTRIFUGAL COMPRESSOR USING STOCHASTIC PROCESSES: GAMMA AND LÉVY
Abstract
Predicting the failures of certain industrial systems has become essential for improving reliability. This prediction is based mainly on the analysis of the evolution of the level of degradation of the system. For systems whose state of deterioration is not directly observable, when the latter is subjected, during its use, to measurable degradation phenomena such as wear, vibration, temperature rise
We propose an approach based on stochastic processes which represent a mathematical structure for modeling, mainly models of continuous degradation and more particularly the Gamma process and the Levy process.
In this article, we present the monitoring of sliding bearing degradation at the level of a compressor, the purpose of which is to evaluate the operating time, as well as the evolution over time of the change, the physical quantities present in this study are vibration and bearing temperature.
The measurements forming the sample of the temperatures and vibrations recorded on a sliding bearing are tested by using an Easy-fit 5.4 statistical software, the overall idea of which is to compare the distribution of the data collected (measurements carried out) , with respect to the theoretical distribution function. Followed by simulation of the evolution of the physical quantities studied have been proposed.
The simulation results of the evolution of the vibration confirm that the latter properly follows a Gamma process, while the temperature variation is described by a Levy process.
Full Text:
PDFReferences
Çinlar.E, Bažant .Z. P, Osman. E,Stochastic process for extrapolating concrete creep, Journal of the Engineering Mechanics Division, 103(EM6):1069–1088, 1977.
Kallen. M. J, Van Noortwijk. J. M, Optimal maintenance decisions under imperfect inspection, Reliability Engineering and System Safety, 90(2-3):177–185, 2005.
Lawless. J.J, Rowder C.M, Covariates and random effects in a gamma process model with application to degradation and failure, Lifetime Data Analysis, 10(3):213–227, 2004.
Michael. L. W, A reliability model based on the gamma process and its analytic theory, Advances in applied probability, VOLUME 21, NUMÉRO 4, pp 899-918, 1989.
Bosse. S, Quadri. G, Gilard. O, Cabarbaye. A, Modèle prédictif de dégradation nonlinéaire dans des conditions d’environnements varies, Lambda Mu 18 e Congrès [16, 17,18octobre2012], pp:1-8.
Martin, Baxter, Lévy simple structural models, Nomura Fixed Income Quant Group, 22 Décembre 2006.
https://fr.wikipedia.org/wiki/Processus_de_ L%C3%A9vy
Remi. R, Processus de Levy et calcul stochastique, Document de Travail, Université Paris-Dauphine. (2010).
Ghamlouch .H, Modélisation de la dégradation maintenance conditionnelle et pronostic: usage des processus de diffusion, Thèse de Doctorat de L’UTT.
Louahem M’sabah. H, Bouzaouit. A
« Degradation model of the bearings by wiener process ». MECHANIKA. Volume. 22 2016) N° (3). ISSN 1392-1207. Page: 225- 228. Université de technologie Kaunas, Lituanie.
Tamaloussi Naima . « Contribution à l’application de la maintenance prédictive pour le diagnostic des défauts des machines tournantes» Thèse de doctorat. Université de Skikda 2020.
Medkour Malika, « Modélisation en vue du diagnostic des défauts des machines tournantes par l’utilisation des méthodes stochastiques : Réseaux bayésiens». Thèse de doctorat. Université de Skikda 2019.
Refbacks
- There are currently no refbacks.