MICROMANIPULATION AND MICRO COMMUTATOR SYSTEMS BASED ON PIEZOELECTRIC MATERIALS

Abdelaziz LEBIED, Brahim NECIB, Mohamed Lakhdar SAHLI

Abstract


In this paper, specific applications dedicated to micro systems are designed to perform micro manipulation tasks intelligently and efficiently. The first approach proposed is a micro manipulator called micro gripper, which is used to manipulate micro objects whose maximum size is 1mm. These useful and sometimes essential devices are designed to perform micro assembly operations or to position a micro object using a microscope after visualization. these micro components with high precision of less than 1 µm. The second approach proposed consists of two applications in the field of micro connections. One of them is a micro beams embedded at one of these extremities and free at the other of the cantilever type. The other one is a structure embedded at the two extremities of the bridge type. These micro beams form the micro commutator. The purpose of our work is to model the deflection of the micro beams proposed under the effect of an external stress based on the electromechanical characteristics of the piezoelectric materials to have a good manipulation of the micro systems and a good connection of the micro commutator. In the course of the work, the performance of these components and for which applications they seem most appropriate will be presented. 


Full Text:

PDF

References


H. Van Brussel, J. Peirs, D. Reynaerts, A. Delchambre, G. Reinhart, N. Roth, M. Weck, and E. Zussman. Assembly of microsystems. Annals of the CIRP, 49(2):451–472, 2000.

Tsui K, Geisberger AA, Ellis M, Skidmore G (2004) Micro-machined end-effector and techniques for directed MEMS assembly. J Micromech Microeng 14:542–549.

Dechev N, Mills JK, Cleghorn WL (2004) Mechanical fastener designs for use in the micro assembly of 3D microstructures. In: IMECE, ASME international mechanical engineering congress and R1D expo.

Popa D, Murthy R, Mittal M, Sin J, Stephanou H (2006) M3 modular multi-scale assembly system for MEMS packaging. In: IEEE/RSJ international conference on intelligent robots and systems. Beijing, China, pp 3712–3717.

Udeshi T, Tsui K (2005) Assembly sequence planning for automated micro assembly. In: International symposium on assembly and task planning.

A. Menciassi, A. Eisenberg, I. Izzo, and P. Dario. From ”macro” to ”micro” manipulations: models and experiments. ASME/IEEE Transaction on Mechatronics, 9(2):311–319, 2004.

A. Bourjault and N. Chaillet. La micro robotique. Hermes, 2002.

P. Lambert and A. Delchambre. Design rules for a capillary gripper in microassembly. In International Symposium on Assembly and Task Planning, Montr´ eal, Canada, July 2005.

Y. Zhou and B. J. Nelson. Force controlled micro gripping. In SPIE Conference on Micro robotics and Micro assembly, pages 211–221, Boston, USA, September 1999.

W. Ehrfeld, M. Begemann, U. Berg, A. Lohf, F. Michel, and M. Nienhaus. Highly parallel mass fabrication and assembly of microdevices. Microsystem Technologies, 7:145–150, 2001.

G. M. Whitesides and B. Grzybowski. Self-assembly at all scale. Science, 295:2418–21, 2002.

M. B. Cohn, K. F. Bohringer, J. M. Noworolski, A. Singh, C. G. Keller, K. Y. Goldberg, and R. T. Howe. Micro assembly technologies for mems. In Proceeding of SPIE Micromachining and Microfabrication, 1998.

Y. Haddab, N. Chaillet, and A. Bourjault, “A microgripper using smart piezoelectric actuators,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., RSJ IROS, Takamatsu, Japan, 2000, pp. 659–664.

A. Menciassi, A. Eisinberg, G. Scalari, C. Anticoli, M. C. Carrozza, and P. Dario, “Force feedback-based micro instrument for measuring tissue properties and pulse in microsurgery,” in Proc. IEEE Int. Conf. Robot. Autom., ICRA, Seoul, Korea, 2001, pp. 626–631.

M. C. Carrozza, A. Eisinberg, A. Menciassi, D. Campolo, S. Micera, and P. Dario, “Towards a force-controlled microgripper for assembling biomedical microdevices,” IOP J. Micromech. Microeng. (JMM), vol. 10, pp. 271–276, 2000.

M. Kemper, “Development of a tactile low-cost microgripper with integrated force sensor,” in Proc. IEEE Int. Conf. Control Appl., CCA, Taipei, Taiwan, 2004, pp. 1461–1466.

S. Btefisch, V. Seidemann, and S. Bttgenbach, “Novel micro-pneumatic actuator for MEMS,” Sens. Actuators A: Phys., vol. 97–98, pp. 638–645, Apr. 1, 2002.

W. Driesen, T. Varidel, S. Rgnier, and J. M. Breguet, “Micro manipulating by adhesion with two collaborating mobile micro robots,” J.Micromech. Microeng., IOP, vol. 17, pp. s259–s267, 2005.

J. Abadie, N. Chaillet, and C. Lexcellent. An integrated shape memory alloy micro actuator controlled by the thermoelectric effect. Sensors and actuators A, 99 (2002) 297-303.

S. Yang, C. Wang, Z. Shi, J. Wang, J. Zhang, Y. Huang, X. Liu, Microstructure, martensitic transformation, mechanical and shape memory properties of Ni-Co-Mn In high-temperature shape memory alloys under different heat treatments, Materials Science and Engineering: A, 655 (2016) 204-211.

M. Kohl, E. Just, W. Pfleging, and S. Miyazaki, “SMA microgripper with integrated antagonism,” Sens. Actuators A: Phys., vol. 83, no. 1–3,pp. 208–213, May 2000.

F. Beyeler, A. Neild, S. Oberti, D. J. Bell, Y. Sun, J. Dual, and B. J. Nelson, “Monolithically fabricated microgripper with integrated force sensor for manipulating micro objects and biological cells aligned in an ultrasonic field,” IEEE J. Micro Electro Mech. Syst. (JMEMS), vol. 16, no. 1, pp. 7–15, Feb. 2007.

C. Yamahata, T. Takekawa, K. Ayano, M. Hosogi, M. Kumemura, B. Legrand, D. Collard, G. Hashiguchi, and H. Fujuta, “Silicon nano tweezers with adjustable and controllable gap for the manipulation and characterization of DNA molecules,” in Proc. IEEE Int. Conf. Microtechnology. Med. Biol., MMB, Okinawa, Japan, May 2006, pp. 123–126.

K. Molhave and O. Hansen, “Electro-thermally actuated microgrippers with integrated force-feedback,” IOP J. Micromech. Microeng. (JMM), vol. 15, pp. 1265–1270, 2005.

K. Kim, X. Liu, Y. Zhang, and Y. Sun, “Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback,” IOP J. Micromech. Microeng. (JMM), vol. 18, p. 055013, 2008.

C. Kügeler, A. Hennings, U. Böttger, R. Waser, J. Electroceram. 22 (2009) 145–149.

S.J. Gross, S. Tadigadapa, T.N. Jackson, S. Trolier-McKinstry, Q.Q. Zhang, Appl. Phys. Lett. 83 (2003) 174–176.

D.V. Taylor, D. Damjanovic, Appl. Phys. Lett. 76 (2000) 1615–1617.

C. Zinck, D. Pinceau, E. Defaÿ, E. Delevoye, D. Barbier, Sens. Actuators A 115 (2004) 483–489.

G.-H. Feng, E.S. Kim, Micromech. Microeng. 14 (2004) 429–435.

D. Shen, J.-H. Park, J.H. Noh, S.-Y. Choe, S.-H. Kim, H.C.Wikle III, D.-J. Kim, Sens. Actuators A 154 (2009) 103–108.

P. Muralt, IEEE. Transactions, Ultrason. Ferroelectrics Frequency Control 47 (2000) 836–845.

Agnus J (2003) Contribution à la micromanipulation : étude, réalisation, caractérisation et commande d’une micro pince piézoélectrique. PhD dissertation, Université de Franche-Comté

Agnus J, Lit PD, Clévy C, Chaillet N (2003),” Description and performances of four degrees of freedom piezoelectric microgripper,”. In: International symposium on assembly and task planning, pp 66–71.

J. Agnus and N. Chaillet. Dispositif de commande d’un actionneur piézoélectrique et Scanner muni de ceux-ci. INPI, patent, N°FR 03000532, 2003.

J.L FANCHON "Guide de la mécanique" Edition Nathan, 1998


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :