EFFECTS OF TOOL TYPE AND ADAPTIVE MILLING ON THE SURFACE TOPOGRAPHY AND THE DIMENSIONAL ACCURACY OF THIN-WALLED COMPONENTS FROM TI6AL4V

Szymon KURPIEL, Krzysztof ZAGÓRSKI, Jacek CIEŚLIK

Abstract


The aerospace industry is seeking to reduce the weight of the constructions. This is the reason for the increase in the use of thin-walled elements. One of the main problems in the machining of thin-walled components is the elastic deformation of the wall, which leads to deformations and thus to geometric errors and a deterioration in the quality of the workpiece. In the work, the influence of the adaptive milling and tool type on the surface topography and the dimensional accuracy of thin-walled components was determined. The samples for constant cutting parameters were prepared from titanium alloy Ti6Al4V using conventional, HSM and HPM tools. Based on the experiment results, waviness and roughness and dimensional deviations (using optical scanner GOM) were determined.


Full Text:

PDF

References


Fitzgerald, R. Mechanics of materials, 2nd edition, Addison-Wesley Publishing Com¬pany Inc., Massachusetts, 1982.

Zębala, W. Minimalizacja błędów obróbki przedmiotów cienkościennych, Inżynieria Maszyn, Kraków, 2010.

Zawada-Michałowska, M., Kuczmaszewski, J. Odkształcenia elementów cienkościennych po frezowaniu, Politechnika Lubelska, Lu¬blin, 2020.

Bałon, P., Rejman, E., Smusz, R., Kiełbasa, B. Obróbka z wysokimi prędkościami skra¬wania cienkościennych konstrukcji lot¬niczych, Mechanik, Warszawa, 2017.

Wang, J., Ibaraki, S., Matsubara, A. A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall ma¬chining. Precis Eng, 50, 506-14, 2017,

https://doi.org/10.1016/j.precisioneng.2017 .07.006

Huang, P., Li, J., Sun, J. Study on perfor-mance in dry milling aeronautical titanium alloy thin-wall components with two types of tools. J Clean Prod, 67, 258-64, 2014, https://doi.org/10.1016/j.jclepro.2013.12.006

Polzer, A., Duvkova, K., Pokorny, P. On the modern CNC milling with compensation of cutting tools and thin-walled workpiece de¬flections. J Mach Eng, 15(3), 33-40, 2015.

Wang, T., He, N., Li, L., & Liu, D. (2012). The Stability of Milling of Thin-walled Workpiece. Advances in Systems Science and Applications, 12(2), 103-112.

Arnaud, L., Gonzalo, O., Seguy, S., Jauregi H., Peigné, G. Simulation of low rigidity part machining applied to thin-walled structures. Int J Adv Manuf Technol, 54, 479-88, 2011, https://doi.org/10.1007/s00170-010-2976-9

Herranz, S., Campa, F., López, L., Rivero, A., Lamikiz, A., Ukar, E., Sánchez, J., Bravo, U. The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems. Proc Inst Mech Eng B, 219(11), 789-801, 2005, https://doi.org/10.1243/095440505X32742

Kahles, J.F., Field, M., Eylon, D., Froes, F. Machining of titanium alloys. JOM, 37, 27-35, 1985, https://doi.org/10.1007/BF03259441

Abotiheen, H., Khidir, B., Bashir, M., Bal-asubramanian, R., Oshkour, A. Machining of Titanium Alloys: A Review, Student Confer¬ence On Research And Development (SCOReD 2011), Malaysia, 2011.

Mouritz, A. Introduction to aerospace ma¬terials, Woodhead Publishing Limited, Aus¬tralia, 2012.

Bibus, Metals, Ti6Al4V – data sheet,

https://www.bibusmetals.pl/alloys/tytan-grade-5-6al-4v/

Byrne, G., Dornfeld, D., Denkena, B., Ad-vanced Cutting Technology. CIRP Annals, 52(2), 483-507, 2003, https://doi.org /10.1016/S0007-8506(07)60200-5


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :