MECHANICAL CHARACTERISTICS OF ARBOBLEND V2 NATURE COATED WITH SILVER NANOPARTICLES

Justina Georgiana MOTAS, Simona Nicoleta MAZURCHEVICI, Dumitru NEDELCU

Abstract


Composite materials are an increasingly important resource having applicability in a wide range of fields such as automotive, aircraft and even medical one. Their purpose is to improve the functionality of the products by increasing their characteristics. In this sense, this manuscript highlights the mechanical characteristics of the Arboblend V2 Nature bio-polymer, reinforced (by coating the granules) with silver nanoparticles (AgNPs). With the incorporation of nano particles into the structure of the eco-friendly polymer, the resistance of the material to different types of tests changes, specifically, its properties decrease compared to the basic polymer due to the presence of discontinues introduced with the incorporation of silver nanoparticles. But this composite material it is a viable alternative for applications that require antimicrobial characteristics: food packaging, medicine, pharmaceutical industry etc.


Full Text:

PDF

References


Taha, I.M., Zaghlool, A., Nasr, A., Nagib, A., El Azab, I.H., Mersal, G.A. M., Ibrahim, M.M., Fahmy, A. Impact of Starch Coating Embedded with Silver Nanoparticles on Strawberry Storage Time. Polymers, 14(7), 1439, 2022, https://doi.org/10.3390/polym 14071439 .

Zhao, X., Liu, H., Hu, Y. A novel gelatin-AgNPs coating preparing method for fabrication of antibacterial and no inflammation inducible coatings on PHBV. React Funct Polym, 107, 54-59, 2016, https://doi.org/10.1016/j.reactfunctpolym.2016.07.014.

Burrell, R.E. A scientific perspective on the use of topical silver preparations. Ostomy Wound Manag, 49, 19–24, 2003.

Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res, 52, 662-8, 2000, https://doi.org/10.1002/1097-4636(2000121 5)52:4<662:aid-jbm10>3.0.co;2-3.

Berger, T.J., Spadaro, J.A., Chapin, S.E., Becker, R.O. Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother, 9(2), 357-8, 1976, https://doi.org /10.1128/aac.9.2.357.

Russell, A.D., Hugo, W.B. 7 antimicrobial activity and action of silver. Prog Med Chem, 31, 351-70, 1994, https://doi.org/10.1016 /S0079-6468(08)70024-9.

Quadrini, F., Bellisario, D., Santo, L., Tedde, G.M. Anti-Bacterial Nanocomposites by Silver Nano-Coating Fragmentation. Mater Sci Forum, 879, 1540–5, 2016, https:// doi.org/10.4028/www.scientific.net/MSF.879.1540 .

Bahrami, A., Mokarram, R.R., Khiabani, M.S., Ghanbarzadeh, B., Salehi, R. Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles. Int J Biol Macromol, 129, 1103–2, 2019, DOI: 10.1016/j.ijbiomac.2018.09.045.

Incoronato, A.I., Buonocore, G.G., Conte, A., Lavorgna, M., Del Nobile, M.A. Active Systems Based on Silver-Montmorillonite Nanoparticles Embedded into Bio-Based Polymer Matrices for Packaging Applications. J Food Prot, 73, 2256–2, 2010, DOI: 10.4315/0362-028x-73.12.2256.

Orsuwan, A., Shankar, S., Wang, L.-F., Sothornvit, R., Rhim, J.-W. One-step preparation of banana powder/silver nanoparticles composite films. J Food Sci Technol, 54, 497–6, 2017, DOI: 10.1007/s13197-017-2491-1.

Rhim, J.W., Wang, L.F.., Hong, S.I. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll, 33, 327–5, 2013, https://doi.org/10.1016 /j.foodhyd.2013.04.002.

Youssef, A.M., Abdel-Aziz, M.S., El-Sayed, S.M. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials, Int J Biol Macromol, 69, 185–1, 2014, DOI: 10.1016/j.ijbiomac.2014.05.047.

Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem, 139, 389–7, 2013, DOI: 10.1016/j.foodchem.2013.01. 045.

Lansdown, A.B.G. Silver in Health Care: Antimicrobial Effects and Safety in Use. In Biofunctional Textiles and the Skin, Karger Publishers: Basel, Switzerland, 2006, pp. 7–34.

Li, L., Bi, Z., Hu, Y., Sun, L., Song, Y., Chen, S., Mo, F., Yang, J., Wei, Y., Wei, X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol Toxicol, 37, 177–1, 2021, DOI:10.1007/s10565-020-09526-4.

De Matteis, V., Cascione, M., Toma, C.C., Leporatti, S. Morphomechanical and organelle perturbation induced by silver nanoparticle exposure. J Nanopart Res, 20, 273, 2018, https://doi.org/10.1007/s11051-018 -4383-3.

Xiao, X., He, E.J., Lu, X.R., Wu, L.J., Fan, Y.Y., Yu, H.Q. Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. Sci Total Environ, 794, 148765, 2021, 10.1016/j.scitotenv.2021.148765.

Jokar, M., Abdul Rahman, R., Ibrahim, N.A., Abdullah, L.C., Tan, C.P. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol, 5, 719–2, 2010, https://doi.org/10. 1007/s11947-010-0329-1.

Mazurchevici, S.-N., Motas, J.G., Diaconu, M., Lisa, G., Lohan, N.M., Glod, M., Nedelcu, D. Nanocomposite Biopolymer Arboblend V2 Nature AgNPs, Polymers, 13, 2932, 2021, DOI:10.3390/polym13172932.

Mazurchevici, S.-N., Vaideanu, D., Rapp, D., Varganici, C.-D., Cărăușu, C., Boca, M., Nedelcu, D. Dynamic Mechanical Analysis and Thermal Expansion of Lignin-Based Biopolymers, Polymers, 13(17), 2953, 2021, DOI:10.3390/polym13172953.

Broitman, E., Nedelcu, D., Mazurchevici, S.N. Tribological and Nanomechanical Properties of a Lignin-based Biopolymer. e-Polymers, 20(1):528-1, 2020, https://doi.org /10 .1515/epoly-2020-0055 .

Tecnaro company website: https://www. tecnaro.de/en/ .

ISO 527: 2 Standard available on: https://www.iso.org/standard/56046.html .

ISO 178:2019 standard available on: https://www.iso.org/standard/70513.html.

SR EN ISO 179 standard available on: https://www.iso.org/obp/ui/#iso:std:iso:179:-1:ed-2:v1:en.

Nedelcu, D., Comaneci, R. Microstructure, mechanical properties and technology of samples obtained by injection from arboblend V2 nature, IJEMS, vol.21, 272-6, 2014.

Kim, H.S., Yang H.S., Kim, H.J. Biodegradability and mechanical properties of agroflour–filled polybutylene succinate biocomposites. J Appl Polym Sci, 97, 1513–21, 2005, https://doi.org/10.1002/app.21905.

Jiang, L., Chen, F., Qian, J., Huang, J., Wolcott, M., Liu L., et all. Reinforcing andtoughening effects of bamboo pulp fibre on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibre composites. Ind Eng Chem Res, 49, 572–7, 2010.

Nedelcu, D., Plavanescu, S., Puiu, E. Impact Resistance of “Liquid Wood”. Advanced Materials Research, ISSN: 1662-8985, 1036, 13-7, Trans Tech Publications, Switzerland, 2014.

Puiu Costescu, E. Contribuții privind comportamentul biocompozitelor în procesul de injectare (Contributions on the behavior of composites in the injection process), ModTech Publishing House, ISBN 978-606-93704-6-9, Iasi, 2019.

Mazurchevici, S.N. Contributii la studiul procesului de obtinere a pieselor ranforsate din materiale biodegradabile (Contributions to the obtaining process study of parts reinforced from biodegradable materials), ModTech Publishing House, ISBN 978-606-93704-2-1, Iasi, 2019.

Nedelcu, D., Stefan, A., Mîndru, T.D., Plavanescu, S. Flexural Properties of Samples Obtained from “Liquid Wood”. Selected Engineering Problems, Number 3, Institute of Engineering Processes Automation and Integrated Manufacturing Systems, 2012.

Mazurchevici, A.-D., Nedelcu, D., Contribuții la studiul procesului de printare 3D a materialelor biodegradabile (Contributions to the 3D printing process study of biodegradable materials), PIM Publishing House, ISBN 978-606-13-5712-3, Iasi, 2020.

Winter, A., Mundigler, N., Holzweber, J., Veigel, S., Müller, U., Kovalcik A., Gindl-Altmutter, W. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly (lactic acid) for 3D printer filaments. Philosophical transaction of the royal society: Mathematical, Physical and Engineering Sciences, 376(2112), 2018, 10.1098/rsta.2017.0046.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :