FEM THERMO-MECHANICAL SIMULATION OF CUTTING FORCE, TORQUE AND TEMPERATURES IN HIGH-SPEED DRILLING PROCESS OF AISI 4140

Patricia BONDOR, Dan Ovidiu RUSU, Florin MILAŞ, Glad CONŢIU, Marcel Sabin POPA

Abstract


This paper presents finite element simulations of cutting force, torque, chip formation and temperature in high-speed drilling of AISI 4140 alloy. The FEM simulations were conducted at a cutting speed of 200 m/min and a feed rate of 0.2 mm/rev., using a TiAlN multilayer coated solid carbide drill. The temperature field in a tool and the forces that appear in the cutting process have an essential effect on the tool wear mechanism and life. Experimental findings confirmed the predicted cutting forces, torques, and chips shape. It was observed that the predicted and measured values were found to be in good agreement.


Full Text:

PDF

References


Thakre, A., Soni, S., Modeling of burr size in drilling of aluminum silicon carbide com¬posites using response surface methodology, Eng. Sci. and Tech., an Int. J. 19.3, 1199-1205, 2016, https://doi.org/10.1016/j.jestch.2016.02.007.

Chen, WC., Tsao, CC., Cutting performance of different coated twist drills, J. Mat. Proc. Tech.; 88: 203–207, 1999, https://doi.org/10.1016/S0 924-0136(98)00396-3.

Chandrasekharan, V., Kapoor, S.G., DeVor, R.E., A Mechanistic Approach to Predicting the Cutting Forces in Drilling: With Application to Fiber-Reinforced Composite Materials, J. Eng. Ind., 117, 559–570, 1995, https://doi.org/10. 1115/1.2803534.

Paul, A., Kapoor, S.G., DeVor, R.E., A Chisel Edge Model for Arbitrary Drill Point Geometry, J. Manuf. Sci. Eng., 127, 23–32, 2005, https://doi.org/10.1115/1.1826076.

Anand, R.S., Patra, K., Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates, CIRP J. Manuf. Sci. Technol., 16, 55–63, 2017, https://doi.org/10.10 16/j.cirpj.2016.07.002.

Qiu, X., Li, P., Li, C., Niu, Q., Chen, A., Ouyang, P., Ko, T.J., Study on chisel edge drilling behavior and step drill structure on delamination in drilling CFRP, Composite Structures, 203, 404–413, 2018, https://doi.org /10.1016/j.compstruct.2018.07.007

Yan, X., Zhang, K., Cheng, H., Luo, B., Hou, G., Force coeffcient prediction for drilling of UD-CFRP based on FEM simulation of orthogonal cutting, The Int. J. of Adv. Manuf. Tech. 104.9 (2019): 3695-3716, 2019, https://doi.org/10.1007/s00170-019-04048-8.

Yang, H., Ding, W., Chen, Y., Laporte, S., Xu, J., Fu, Y., Drilling force model for forced low frequency vibration assisted drilling of Ti-6Al-4V titanium alloy, Int. J. of Machine Tools and Manufacture, 146, 103438, 2019, https://doi.org /10.1016/j.ijmachtools.2019.103438.

Ezugwu, EO., Key improvements in the machining of difficult-to-cut aerospace super alloys, Int J Mach Tools Manuf, 45(12–13):1353–1367, 2005, https://doi.org/10.1016/ j.ijmachtools.2005.02.003.

Mukherjee, I., Ray, P.K., A review of optimization techniques in metal cutting processes, Comput Ind Eng, 50(1–2):15–34, 2006, https://doi.org/10.1016/j.cie .2005.10.001.

Trent, E.M., Wright, P.K., Metal cutting, Butterworth-Heinemann, Boston, 2000, https://doi.org/10.1016/C2009-0-25057-4.

Prasanna, J., Karunamoorthy, L., Raman, MV., Prashanth, S., Chordia, DR., Optimization of process parameters of small hole dry drilling in Ti–6Al–4V using Taguchi and grey relational analysis, Measurement 48, 346–354, 2014, https://doi.org/10.1016/j.measurement.2013.11.020.

Kivak, T., Habali, K., Şeker, U., The effect of cutting parameters on the hole quality and tool wear during the drilling of Inconel 718, Gazi University J. of Sci. 25:2, 2012, 533–540

Ramesh, B., Elayaperumal, A., Satishkumar, S., Effect of the standard and special geometry design of a drill body on quality characteristics and multiple performance optimization in drilling of thick laminated composites, Procedia Eng.; 97: 390–401, 2014, https://doi.org/10.1016 /j.proeng.2014.12.263

Merchant, M.E., Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip, J. of Applied Physics 16, 267–275, 1945, https://doi.org/10.1063/1.1707586.

Lee, E.H., Shaffer, B.W., The theory of plasticity applied to a problem of machining, J. of Applied Physics 18 (1951) 405–413, 1951, https://doi.org/10.1115/1.4010357.

Sievert, R., Hamann, A.-H., Noack, D., Löwe, P., Singh, K.N., Künecke, G., Clos, R., Schreppel, U., Veit, P., Uhlmann, E., Zettier, R., Simulation of chip formation with damage during high-speed cutting, Tech. Mech., 23, 216–233 (in German), 2003, http://dx.doi.org /10.1016/j.jmatprotec.2006.12.018.

Bäker, M., Rösier, J., Siemers, C., A finite element model of high-speed metal cutting with adiabatic shearing, Computers and Structures, 80, 495–513, 2002, https://doi.org/10.1016/ S0045-7949(02)00023-8.

Bäker, M., An investigation of the chip segmentation process using finite elements, Tech. Mech. 23 (2003) 1–9.

Bäker, M., Finite element simulation of high-speed cutting forces, J. of Mat. Proc. Technology, 176 (2006) 117–126, 2006, https://doi.org/10.1016/j.jmatprotec.2006.02.019

Behrens, A., Westhoff, B., Kalisch, K., Application of the finite element method at the chip forming process under high speed cutting conditions, H.K. Tönshoff, F. Hollmann, Hochgeschwindigkeits-spanen,Wileyvch, pp. 112–134, 2005, https://doi.org/10.1002/352760 5142.ch5.

Ucun, İ., Aslantas, K., Oezkaya, E., Cicek, A., 3D numerical modelling of micro-milling process of Ti6Al4V alloy and experimental validation, Advances in Mat. and Proc. Technologies 3, p. 250-260, 2017, https://doi.org/10.1080/2374068X.2016.1247343

Outeiro, JC., Umbrello, D., M’Saoubi, R., Jawahir, IS., Evaluation of Presente Numerical Models for Predicting Metal Cutting Performance and Residual Stresses, Machining Sci. and Tech., 19.2, 183-216, 2015, https://doi.org/10.1080/10910344.2015.1018537.

Rodríguez, J.M., Jonsén, P., Svoboda, A., Simulation of metal cutting using the particle finite-element method and a physically based plasticity model, Computational Particle Mechanics 4, 35-51, 2017, https://doi.org/10 .1007/s40571-016-0120-9.

Abukhshim, N.A., Mativenga, P.T., Sheikh, M.A., Heat generation and temperature prediction in metal cutting, Int J Mach Tools Manuf 46, 782-800, 2006, https://doi.org/10 .1016/j.ijmachtools.2005.07.024.

Lazoglu, I., Poulachon, G., Ramirez, C., Akmal, M., Marcon, B., Rossi, F., Queteiro, J. C., Krebs, M., Thermal analysis in Ti-6Al-4V drilling, CIRP Annals – Manuf. Tech. 66, 105-108, 2017, https://doi.org/10.1016/j.cirp. 2017.04.020.

Isbilir, O., Ghassemieh, E., Finite Element Analysis of Drilling of Titanium Alloy, Procedia Eng. 10, 1877-1882, 2011, https://doi.org/10. 1016/j.proeng.2011.04.312

Matsumura, T., Tamura, S., Cutting Simulation of Titanium Alloy Drilling with Energy Analysis and FEM, Procedia CIRP 31, 252-257, 2015, https://doi.org/10.1016/j.procir.2015.03.045.

Wu, J., Di Han, R., A new approach to predicting the maximum temperature in dry drilling based on a finite element model, J. of Manufacturing Processes 11, 19-30, 2009, https://doi.org/10.1016/j.jmapro.2009.07.001

Tay, A.O., Stevenson, M. G., de Vahl Davis, G., Oxley, P. L.B., A numerical method for calculating temperature distributions in machining from force and shear angle measurement, Int. J. of Machine Tool Design and Research 16.4, 335-349, 1976, https://doi.org/10.1016/0020-7357(76)90043-3.

Tay, A.O., Stevenson, M. G., de Vahl Davis, Using the finite element method to determine temperature distributions in orthogonal machining, Proceedings of the institution of mech. engineers, 188, 627-638, 1974, https://doi. org/10.1243/PIME_PROC_1974_188_074_02.

Lin, J., Lee, S. L., & Weng, C. I., Estimation of cutting temperature in high speed machining, J. Eng. Mater. Technol., 114, 289-295, 1992, https://doi.org/10.1115/1.2904175.

Karmani, S., The thermal properties of bone and the effects of surgical intervention, Current Orthopaedics, Vol. 20, No. 1, 52-58, 2006, https://doi.org/10.1016/j.cuor.2005.09.011.

Santos, M.R., Lima e Silva, S.M.M., Machado, Á.R., Silva, M.B., Guimaráes, G., Carvalho, S.R., Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique, Mathematical Problems in Engineering, 1-11, 2014, https://doi.org/10.1155/2014/871859.

Siller, A., Steininger, A., Bleicher, F., Heat Dissipation in Turning Operations by Means of Internal Cooling, Procedia Eng. 100, 1116–1123, 2015, https://doi.org/10.1016/j.proeng .2015.01.474

Mia, M., Dhar, N.R., Response surface and neural network based predictive models of cutting temperature in hard turning, J. of advanced research. 7.6, 1035–1044, 2016, https://doi.org/10.1016/j.jare.2016.05.004.

Shchurov, I.A., Nikonov, A.V., Boldyrev, I.S., SPH-Simulation of the Fiber-reinforced Composite Workpiece Cutting for the Surface Quality Improvement, Procedia Eng., 150, 860–865, 2016, https://doi.org/10.1016/j.proeng. 2016.07.029

Boldyrev, I.S., Shchurov, I.A., Nikonov, A.V., Numerical Simulation of the Aluminum 6061-T6 Cutting and the Effect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction, Procedia Eng., 150, 866–870, 2016, https://doi.org/10.7763/IJMMM .2015.V3.160.

Boldyrev, I.S., Shchurov, I.A., FEM thermo-mechanical simulation of the free orthogonal cutting and temperature distribution in tool and workpiece, Procedia Eng. 206, 1133–1136, 2017, https://doi.org/10.1016/j.proeng.2017.10. 606

Klocke, F., Brockmann, M., Gierlings, S., Veselovac, D., Kever, D., Roidl, B., Schmidt, G., Semmler, U., Analytical modeling methods for temperature fields in metal cutting based on panel method of fluid mechanics, Procedia CIRP. 31, 352–356, 2015, https://doi.org/10. 1016/j.procir.2015.03.067.

Cotterell, M., Ares, E., Yanes, J., López, F., Hernandez, P., & Peláez, G., Temperature and strain measurement during chip formation in orthogonal cutting conditions applied to Ti-6Al-4V, Procedia Eng. 63, 922–930, 2013, https://doi.org/10.1016/j.proeng.2013.08.216


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :